

Monday, January 24, 2022, 7:00 PM

Tucker City Hall

1975 Lakeside Pkwy, Ste 350B, Tucker, GA 30084

Members:

Frank Auman, Mayor
Roger W. Orlando, Council Member District 1, Post 1
Cara Schroeder, Council Member District 2, Post 1
Alexis Weaver, Council Member District 3, Post 1
Virginia Rece, Council Member District 1, Post 2
Noelle Monferdini, Council Member District 2, Post 2
Anne Lerner, Council Member District 3, Post 2

via ZOOM link; https://us02web.zoom.us/j/81267571895 or Telephone: 877 853 5247 (Toll Free) ID: 812 6757 1895

				Pages
A.	CALL TO	OORDER		
В.	ROLL CA	ALL		
C.	MAYOR	'S OPENING REMARKS		
D.	NEW BU	JSINESS		
	D.1.	Ordinance O2021-10-22	Courtney.Smith	3
		First Read and Public Hearing of an Ordinance to the Mayor and Co Land Use Permit (SLUP-21-0004) to allow a drive-through restaura concurrent variances for inter-parcel access (CV-21-0002), setback drive-through (CV-21-0004) at location 4435 Hugh Howell Road.	nt with three	
	D.2.	Resolution R2022-01-03		189
		A Resolution to Appoint Planning Commission Members		
	D.3.	Resolution R2022-01-04		191
		A Resolution to Appoint DDA Members		
	D.4.	Resolution R2022-01-05		193
		A Resolution to Appoint Public Facilities Authority Members		
	D.5.	Resolution R2022-01-06		195
		A Resolution to Appoint an Urban Redevelopment Agency Membe	er	
	D.6.	Resolution R2022-01-07		197

A Resolution to Appoint ZBA Members

- E. EXECUTIVE SESSION
 - As required for litigation, personnel and/or real estate
- F. ACTION AFTER EXECUTIVE SESSION
- G. ADJOURNMENT

MEMO

To: Honorable Mayor and City Council Members

From: Courtney Smith, Planning and Zoning Director

CC: Tami Hanlin, City Manager

Date: Jan. 18, 2022

RE: SLUP-21-0004 to allow a drive-through restaurant with three concurrent variances for inter-parcel access,

setbacks, and drive-through location

Issue:

The applicant, Chick-fil-A, Inc., is requesting a Special Land Use Permit (SLUP) with three concurrent variances for the property located at 4435 Hugh Howell Road, for a restaurant with a drive-through configuration. The subject property is 2.05 acres and is developed with a single structure, previously occupied by The Greater Good BBQ.

These applications were previously deferred from the Nov. 8, 2021 and Dec. 13, 2021 City Council meetings in order to study the potential closure of Rosser Terrace. A public meeting was held on Jan. 18, 2022 regarding the possibility of closing Rosser Terrace. As more than 60 days have passed since the initial first read, we are required to repeat the 1st and 2nd read. The 1st read is on Jan. 24, 2022 and the 2nd read is on Feb. 15, 2022.

Recommendation:

Staff recommends APPROVAL of Land Use Petition SLUP-21-0004, DENIAL of CV-21-0002, DENIAL of CV-21-0003, and APPROVAL of CV-21-0004, subject to the conditions in the staff report.

At its September 17, 2021 public hearing, the Planning Commission recommends APPROVAL WITH CONDITIONS of SLUP-21-0004, DENIAL of CV-21-0002, DENIAL of CV-21-0003, and APPROVAL of CV-21-0004 subject to the amended staff conditions in the staff report.

Background:

The subject property is located at the southwestern intersection of Hugh Howell and Rosser Terrace, across from 'The Centre on Hugh Howell' shopping center. The subject property is zoned DT-2 (Downtown Corridor Zone), which allows restaurants without drive-throughs by right, however restaurants with a drive-through configuration require a SLUP.

The applicant is requesting relief from the requirement prohibiting drive-through facilities between the public street and building (CV-21-0002), relief from the maximum building setback along Rosser Terrace (CV-21-0003), and relief from the requirement to provide inter-parcel access (CV-21-0004). The proposed drive-through restaurant will be a relocation of the existing Chick-fil-A, which is currently located at 4340 Hugh Howell Road. The applicant is proposing a relocation to a larger site that provides adequate space for Chick-fil-A's new design standards for drive-through facilities.

The applicant is proposing removing the existing buildings and billboard and constructing a new ±4,978-square foot restaurant with three lanes, two drive-through lanes and one bypasp tage 33 years order and pick up canopies. The proposed restaurant

will be located in the northeastern corner of the parcel. The submitted site plan shows that the proposed drive-through lanes would be constructed in front of the building. Pursuant to Section 46-1166, supplemental regulations for restaurants with drive-through facilities, drive-through lanes shall be located to the side or rear of the building. The applicant is asking for a variance for this requirement (CV-21-0002).

The submitted site plan shows 62 proposed parking spaces, which meets the minimum off-street parking requirements for restaurants with seating for patrons of one space per 250 sq.ft. of floor area. The site plan also allows room for 32 stacking spaces across the two drive-through lanes. The existing Chick-fil-A at 4340 Hugh Howell Road has stacking for 18 vehicles and the existing Chick-fil-A at 4071 Lavista has stacking for 17 spaces. While our code only requires stacking for 10 vehicles, Chick-fil-A generates more traffic than the majority of other drive-through facilities. The peak stacking for Chick-fil-A during COVID has averaged around 20-25 cars. Pre-COVID stacking numbers were closer to 18-20.

Summary:

While the proposed use is not completely consistent with the Downtown Character Area, staff does not believe this use would cause a disproportionate proliferation of drive-through facilities, as the proposed Chick-fil-A would be a relocation of an existing Chick-fil-A located just north of the subject property. Potential impacts can be mitigated by transportation improvements and the adherence of the 50' transitional buffer.

LANDSCAPE NOTES

SOUTHEAST

- 1. Landscape Contractor to read and understand the Landscape Specifications (sheet L-102) prior to finalizing bids. The Landscape Specifications shall be adhered to throughout the
- 2. Contractor is responsible for locating and protecting all underground utilities prior to digging.
- Contractor is responsible for protecting existing trees from damage during construction.
- 4. All tree protection devices to be installed prior to the start of land disturbance, and maintained until final landscaping.
- 5. All tree protection areas to be protected from sedimentation.
- 6. All tree protection fencing to be inspected daily, and repaired or replaced as needed.
- 7. No parking, storage or other construction activities are to occur within tree protection areas. 8. All planting areas shall be cleaned of construction debris (ie. concrete, rock, rubble, building materials, etc) prior to adding and spreading of the topsoil.
- 9. General Contractor is responsible for adding a min of 4" clean friable topsoil in all planting beds and all grassed areas. Graded areas to be held down the appropriate elevation to account for topsoil depth. See Landscape Specifications for required topsoil characteristics.
- 10. In all parking lot islands, the General Contractor is responsible to remove all debris, fracture/loosen subgrade to a min. 24" depth. Add topsoil to a 6"-8" bermed height above island
- curbing; refer to landscape specifications and landscape island detail. 11. Prior to beginning work, the Landscape Contractor shall inspect the subgrade, general site conditions, verify elevations, utility locations, irrigation, approve topsoil provided by the General
- Contractor and observe the site conditions under which the work is to be done. Notify the General Contractor of any unsatisfactory conditions, work shall not proceed until such conditions have been corrected and are acceptable to the Landscape Contractor.
- 12. Any deviations from the approved set of plans are to be approved by the Landscape Architect. 13. Landscaping shall be installed in conformance with ANSI Z60.1 the "American Standard for Nursery Stock" and the accepted standards of the American Association of Nurserymen.
- 14. Existing grass in proposed planting areas shall be killed and removed. Hand rake to remove all rocks and debris larger than 1 inch in diameter, prior to adding topsoil and planting shrubs.
- 15. Soil to be tested to determine fertilizer and lime requirements prior to laying sod. 16. Annual and perennial beds: add min. 4 inch layer of organic material and till to a min. depth of 12 inches. Mulch annual and perennial beds with 2-3 inch depth of mini nuggets.
- 17. All shrubs beds (existing and new) to be mulched with a min. 3 inch layer of mulch (double shredded hardwood mulch). 18. Planting holes to be dug a minimum of twice the width of the root ball, for both shrub and tree. Set plant material 2-3" above finish grade. Backfill planting pit with topsoil and native
- 19. Sod to be delivered fresh (Cut less than 24 hours prior to arriving on site), laid immediately, rolled, and watered thoroughly immediately after planting. Edge of sod at planting beds are to be "V" trenched; see Landscape Details.
- 20. Any existing grass disturbed during construction to be fully removed, regraded and replaced. All tire marks and indentions to be repaired.
- 21. Water thoroughly twice in first 24 hours and apply mulch immediately.
- 22. The Landscape Contractor shall guarantee all plants installed for one full year from date of acceptance by the owner. All plants shall be alive and at a vigorous rate of growth at the end of the guarantee period. The Landscape Contractor shall not be responsible for acts of God or vandalism. See Landscape Specifications for Warranty requirements/expectations.
- 23. Any plant that is determined dead, in an unhealthy, unsightly condition, lost its shape due to dead branches, or other symptoms of poor, non-vigorous growth, shall be replaced by the Landscape Contractor. See Landscape Specifications for warranty requirements/expectations.
- 24. Site to be 100% irrigated in all planting beds and grass area by an automatic underground Irrigation System. See Irrigation Plan L-200 for design. Irrigation as-built shall be provided to the
- Landscape Architect within 24 hours of irrigation install completion.
- 25. Stake all evergreen and deciduous trees as shown in the planting detail and as per the Landscape Specifications.
- 26. Remove stakes and guying from all trees after one year from planting.

	Υ			
REQUIRED	1.	30 tree density units per acre, excluding buffer	areas	
		1.43 AC x 30 units	=	42.9 units required
	2.	15% of site to be open space		
		62,266 SF x 15%	=	9,340 SF of open space required
	3.	(1) tree per 2,000 SF of required open space		
		13,383 SF / 2,000 SF	=	7 trees required
PROVIDED	1.	QTY Species	TDU	Total
		20 Nellie R. Stevens Holly	0.5 =	10
		34 Waxmyrtle	0.4 =	13.6
		11 Cherry	0.5 =	5.5
		10 Willow Oak	0.7 =	7
		10 Princeton Elm	0.7 =	7
		Total	=	43.1 units provided
	2.	Open space	=	11,360 SF of open space provided
	3.	7 elm	=	7 trees provided
B. STREET TRE	ES			
REQUIRED	1.	Screen drive-thru from public view with a hedg	je row insta	lled at 36" height
	2.	(1) tree per 30 LF		Ç
	2.	(1) tree per 30 LF Hugh Howel Road: 154 LF / 30 LF	=	5 street trees required
	2.	` '	=	-
PROVIDED	2.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF		5 street trees required
PROVIDED	1.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height		5 street trees required 9 street trees required
PROVIDED		Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF	=	5 street trees required
PROVIDED C. PARKING LO	1. 2.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm	=	5 street trees required9 street trees required5 street trees provided
	1. 2.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm 10% of the total lot area of the parking lot shal	= =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided
:. PARKING LO	1. 2. T	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm	= =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided
C. PARKING LO	1. 2. T	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm 10% of the total lot area of the parking lot shal	= =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided
C. PARKING LO	1. 2. <u>T</u> 1.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm 10% of the total lot area of the parking lot shal 21,169 SF x 10%	= =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided
C. PARKING LO	1. 2. <u>T</u> 1.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm 10% of the total lot area of the parking lot shal 21,169 SF x 10% (1) tree per 8 parking spaces	= = = I be landsca =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided 2,117 SF of landscape required
C. PARKING LO REQUIRED	1. 2. <u>T</u> 1.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm 10% of the total lot area of the parking lot shal 21,169 SF x 10% (1) tree per 8 parking spaces 61 spaces / 8 spaces	= = = I be landsca = =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided 2,117 SF of landscape required 8 parking lot trees required
PARKING LO REQUIRED PROVIDED	1. 2. T 1. 2. 1. 2.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm 10% of the total lot area of the parking lot shal 21,169 SF x 10% (1) tree per 8 parking spaces 61 spaces / 8 spaces Parking lot landscape 6 oak, 2 elm	= = = I be landsca = = =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided 2,117 SF of landscape required 8 parking lot trees required 2,200 SF of landscape provided
C. PARKING LO REQUIRED PROVIDED	1. 2. T 1. 2. 1. 2.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm 10% of the total lot area of the parking lot shal 21,169 SF x 10% (1) tree per 8 parking spaces 61 spaces / 8 spaces Parking lot landscape 6 oak, 2 elm	= = = = = = = = = = = = = = = = = = =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided 2,117 SF of landscape required 8 parking lot trees required 2,200 SF of landscape provided 8 parking lot trees provided
C. PARKING LO REQUIRED PROVIDED D. TREE PRESE	1. 2. T 1. 2. 1. 2.	Hugh Howel Road: 154 LF / 30 LF Rosser Terrace: 250 LF / 30 LF Needlepoint holly planted at 36" height Hugh Howel Road: 2 cherry, 3 elm Rosser Terrace: 3 cherry, 5 Nellie, 4 elm 10% of the total lot area of the parking lot shal 21,169 SF x 10% (1) tree per 8 parking spaces 61 spaces / 8 spaces Parking lot landscape 6 oak, 2 elm	= = = = = = = = = = = = = = = = = = =	5 street trees required 9 street trees required 5 street trees provided 12 street trees provided 2,117 SF of landscape required 8 parking lot trees required 2,200 SF of landscape provided 8 parking lot trees provided

REQUIRED 1. 6' height fence and 50' buffer required along property line adjacent to residential zoning

PLANT LIST

PROVIDED 1. 6' height fence and 50' buffer provided

Qty	Botanical Name	Common Name	Scheduled Size	Remarks
	Trees			
12	Cryptomeria japonica 'Yoshino'	Yoshino Cryptomeria	8' Hgt.	Full to ground
31	Ilex x Nellie R Stevens	Nellie Stevens Holly	3" Cal	B & B
11	Magnolia grandiflora	Southern Magnolia	8' Hgt.	Full to ground
61	Myrica cerifera	Southern Waxmyrtle	2" Cal	Tree form; full to ground
11	Prunus 'Okame'	Okame Cherry	3" Cal	B & B; single straight leader
4	Quercus nuttallii	Nuttall Oak	2" Cal; 10' Hgt.	B & B; single straight leader
10	Quercus phellos	Willow Oak	4" Cal; 14' Hgt.	B & B; single straight leader
12	Ulmus americana 'Princeton'	Princeton Elm	4" Cal; 14' Hgt.	B & B
	Shrubs			
158	Azalea indica 'Red Encore'	Red Encore Azalea	3 Gal.	
16	Buxus microphylla	English Boxwood	3 Gal.	
76	Ilex cornuta 'Needlepoint'	Needlepoint Holly	36" Hgt.	
37	Illicum parviflorum	Yellow Anise	3 Gal.	
87	Loropetalum chinense	Loropetalum	3 Gal.	
113	Panicum virgatum 'Heavy Metal'	Switch Grass	3 Gal.	
	Groundcovers			
559	Hypericum calycinum	St. John's Wort	1 Gal.	
123	Rudbeckia fulgida sullivantii 'Goldsturm'	Black-eyed Susan	1 Gal.	
	Other			

Landscape Architecture 770.442.8171 tel 770.442.1123 fax

Manley Land Design, Inc. 51 Old Canton Street Alpharetta, Georgia 30009

manleylanddesign.com

FSU# 04959

REVISION SCHEDULE

NO. DATE DESCRIPTION

MLD PROJECT # 2021227 PRINTED FOR PERMIT 01.12.22

Information contained on this drawing and in all digital files produced for above named project may not be reproduced in any manner without express written or verbal consent from authorized project representatives.

Landscape Plan

SHEET NUMBER

L-100

(IN FEET) 1 inch = 20 ft.

Chick-fil-A **5200 BUFFINGTON RD** Atlanta, Georgia 30349-2998

FSU#04959 BUILDING TYPE / SIZE: P13-SE-LRG

REVISION SCHEDULE

NO. DATE DESCRIPTION

CONSULTANT PROJECT # 120005-01-049 December 8, 2021 DRAWN BY Information contained on this drawing and in all digital files produced for above named project may not be reproduced in any manner without express written or verbal consent from authorized project representatives.

ROSSER GATE EXHIBIT

Land Use Petitions: SLUP-21-0004, CV-21-0002, CV-21-0003, & CV-21-0004

Date of Staff Recommendation Preparation: August 23, 2021

Planning Commission: September 16, 2021

Mayor and City Council, 1st Read: October 12, 2021

Mayor and City Council, 2nd Read: November 8, 2021

PROJECT LOCATION: 4435 Hugh Howell Road

DISTRICT/LANDLOT(S): 18th District, Land Lot 214

ACREAGE: ±2.05

EXISTING ZONING DT-2 (Downtown Corridor Zone)

EXISTING LAND USE Former Restaurant

CURRENT FUTURE LAND USE DESIGNATION: Downtown

OVERLAY DISTRICT: N/A

APPLICANT: Chick-fil-A, Inc. c/o Jennifer Santelli

OWNER: John Poulakis

PROPOSED DEVELOPMENT: SLUP to allow a drive-through restaurant with three

concurrent variances for inter-parcel access, setbacks,

and drive-through location

STAFF RECOMMENDATION: APPROVAL with conditions of SLUP-21-0004 (restaurant

with drive-through)

DENIAL of CV-21-0002 (drive-through locational

requirements)

DENIAL of CV-21-0003 (setback requirements) **APPROVAL of CV-21-0004** (inter-parcel access

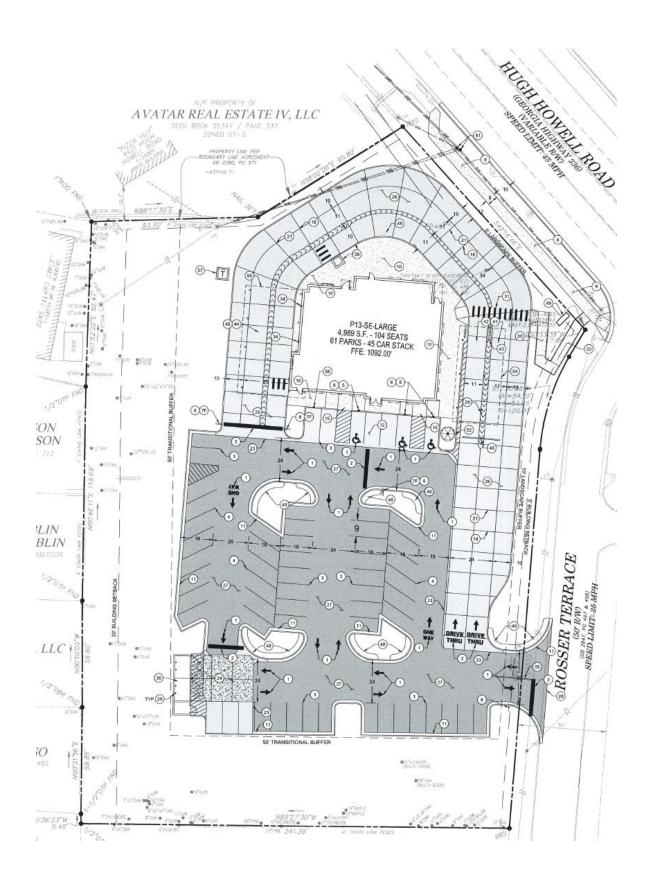
requirements)

BACKGROUND

The applicant, Chick-fil-A, Inc., is requesting a Special Land Use Permit (SLUP) with three concurrent variances for the property located at 4435 Hugh Howell Road, for a restaurant with a drive-through configuration. The subject property is 2.05 acres and is developed with a single structure, previously occupied by The Greater Good BBQ.

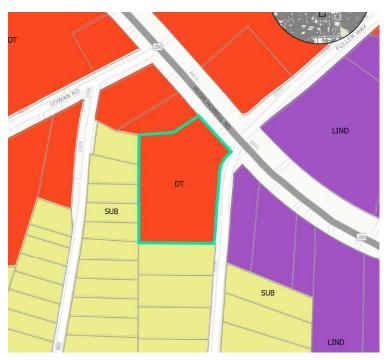
PROJECT DATA

The subject property is located at the southwestern intersection of Hugh Howell and Rosser Terrace, across from 'The Centre on Hugh Howell' shopping center. The subject property is zoned DT-2 (Downtown Corridor Zone), which allows restaurants without drive-throughs by right, however restaurants with a drive-through configuration require a SLUP.


The applicant is requesting relief from the requirement prohibiting drive-through facilities between the public street and building (CV-21-0002), relief from the maximum building setback along Rosser Terrace (CV-21-0003), and relief from the requirement to provide inter-parcel access (CV-21-0004). The proposed drive-through restaurant will be a relocation of the existing Chick-fil-A, which is currently located at 4340 Hugh Howell Road. The applicant is proposing a relocation to a larger site that provides adequate space for Chick-fil-A's new design standards for drive-through facilities.

The applicant is proposing removing the existing buildings and billboard and constructing a new ±4,978-square foot restaurant with three lanes, two drive-through lanes and one bypass lane, as well as order and pick up canopies. The proposed restaurant will be located in the northeastern corner of the parcel. The submitted site plan shows that the proposed drive-through lanes would be constructed in front of the building. Pursuant to Section 46-1166, supplemental regulations for restaurants with drive-through facilities, drive-through lanes shall be located to the side or rear of the building. The applicant is asking for a variance for this requirement (CV-21-0002).

The submitted site plan shows 62 proposed parking spaces, which meets the minimum off-street parking requirements for restaurants with seating for patrons of one space per 250 sq.ft. of floor area. The site plan also allows room for 32 stacking spaces across the two drive-through lanes. The existing Chick-fil-A at 4340 Hugh Howell Road has stacking for 18 vehicles and the existing Chick-fil-A at 4071 Lavista has stacking for 17 spaces. While our code only requires stacking for 10 vehicles, Chick-fil-A generates more traffic than the majority of other drive-through facilities. The peak stacking for Chick-fil-A during COVID has averaged around 20-25 cars. Pre-COVID stacking numbers were closer to 18-20.


The Downtown Tucker Zoning Districts transitional buffer regulations require that any DT district adjoining an RE, RLG, R-100, R-85, R-75, or R-60 district, must have a 50-foot transitional buffer zone. The subject property abuts residentially zoned properties to the south and west and the site plan shows the proposed 50-foot buffers along the property lines will be maintained.

The site plan also shows a 6-foot sidewalk and 5-foot landscape strip along Hugh Howell Road, which complies with the regulations in *Section 46-994 Streets and sidewalks* for the Downtown Tucker Zoning Districts. These improvements are not shown along Rosser Terrace but are required by code.

CHARACTER AREA (Future Land Use)

The subject property is located within the Downtown Character Area on the future land use map. Character Areas are generally used as a visioning guide for an area that identifies items such as primary land uses, development strategies, and design considerations. Character Areas speak to the adopted vision of the community as it continues to grow and develop over time. The Downtown Character Area encourages the following commercial land uses: various residential uses, retail and service commercial, office, vertical mixed use, incubator start-ups and shared tenant spaces, and civic uses. One of the development strategies of the Downtown Character Area is to "encourage new development and redevelopment that preserves downtown's special small-town qualities, keeps Main Street wide and open, and is

designed to complement the size and style of Tucker's older buildings." Staff finds the special land use request for a drive-through is not consistent with the comprehensive plan, however, it will not cause a disproportionate proliferation of drive throughs in the Downtown Character Area, as the proposed development would be a relocation of an existing Chick-fil-A northwest of the subject property.

PUBLIC PARTICIPATION PLAN REPORT

The applicant hosted a community meeting at the subject property on May 25, 2021 after mailing a letter and site plan explaining the proposed project to all property owners within 500 feet of the subject parcel. There were 25 people in attendance including the applicant, owner, representatives of Chick-fil-A, and community members. The applicant's report listed concerns and questions regarding traffic, access, trash, a traffic signal, speed bumps, and Rosser Terrace being a cut through to Hwy 78. It does not appear that any changes were made to the site plan as a result of the Public Participation Meeting.

NEARBY/SURROUNDING LAND ANALYSIS & ZONING

Adjacent & Surrounding Properties	Zoning (Petition Number)	Existing Land Use
Nearby: North	DT-2 (Downtown Corridor Zone)	Tucker Plaza Shopping Center
Adjacent: Northwest	DT-2 (Downtown Corridor Zone)	Drive-through Zaxby's and empty commercial space (formerly Pizza Hut)
Adjacent: South	R-75	Single-family detached homes

Adjacent: East (across Rosser Terrace)	C-1 (Local Commercial)	Commercial & drive-through Wendy's
Adjacent: West	C-1 (Local Commercial) ; and R-75 (Residential Medium Lot – 75)	Commercial and residential single- family detached homes

Zoning and Aerial Exhibits showing surrounding land uses.

SLUP-21-0004: Restaurant with drive through

CRITERIA TO BE APPLIED - SPECIAL LAND USE PERMIT

Criteria (standards and factors) for special land use decisions are provided in Section 46-1594 of the City of Tucker Zoning Ordinance. The applicant is required to address these criteria (see application); below are staff's findings which are independent of the applicant's responses to these criteria.

A. Adequacy of the size of the site for the use contemplated and whether or not adequate land area is available for the proposed use including provision of all required yards, open space, off-street parking, and all other applicable requirements of the zoning district in which the use is proposed to be located.

The subject site is approximately 2.05 acres. The applicant meets the requirements for transitional buffers and off-street parking based on the submitted site plan. Additionally, the applicant meets the required 20- foot rear setback; however, they are seeking a variance for the required side corner setback along Rosser Terrace. While the applicant is requesting three concurrent variances, none are a direct impact of the size of the site.

B. Compatibility of the proposed use with adjacent properties and land uses and with other properties and land uses in the district.

The proposed development is compatible with the commercial land uses and commercial development of adjacent properties as there are two other drive-through restaurants within 500 feet of the subject property, however, it is not compatible with the adjacent residential zoning to the west and south. The 50' transitional buffer helps to minimize the impact to these residential properties.

C. Adequacy of public services, public facilities, and utilities to serve the proposed use. Schools. There will be no impact on public school facilities.

Stormwater management. No comments.

Water and sewer. No comments. Sewer capacity approval has already been obtained for this project.

D. Adequacy of the public street on which the use is proposed to be located and whether or not there is sufficient traffic-carrying capacity for the use proposed so as not to unduly increase traffic and create congestion in the area.

The project site is located at the southwestern intersection of Hugh Howell Road and Rosser Terrace. Hugh Howell, a major arterial road, has four travel lanes and a center turn lane. Rosser Terrace is a two-lane local road. The applicant provided a Traffic Impact Study that was conducted in June 2021. The study found that the site would benefit from a right turn lane from northbound Rosser Terrace onto eastbound Hugh Howell Road. While the Traffic Impact Study recommended this additional right turn lane, it has not shown on the submitted site plan and could impact the property at 4445 Hugh Howell. The curb cut for the proposed drive-through facility has been placed on Rosser Terrace to minimize impact to a major arterial as the consolidation of curb cuts on major roads helps to reduce potential traffic accidents.

While the drive-through lanes begin immediately to the north when you enter the site, stacking for 32 cars has been provided across two lanes which should limit any cars queuing on Rosser Terrace. The addition of a deceleration lane would also limit any impact to vehicles traveling Rosser Terrace.

A traffic signal at the intersection of Hugh Howell and Rosser Terrace would not be permitted by GDOT due to the close proximity of the signal at Hugh Howell and Cowan Road.

E. Whether or not existing land uses located along access routes to the site will be adversely affected by the character of the vehicles or the volume of traffic generated by the proposed use.

The subject property abuts residential lots along the southern and western property lines. During their neighborhood meeting, residents who live along Rosser Terrace expressed concern that the

introduction of a Chick-fil-A would increase the traffic queue to turn onto Hugh Howell Road from Rosser Terrace. The applicant conducted a traffic study that found the addition of a right turn lane from northbound Rosser Terrace on to eastbound Hugh Howell Road would help mitigate some of the traffic. The study also found that the intersection of Hugh Howell Road and Rosser Terrace would experience an overall increase in delay, even with the addition of the right turn lane.

F. Adequacy of ingress and egress to the subject property and to all proposed buildings, structures, and uses thereon, with particular reference to pedestrian and automotive safety and convenience, traffic flow and control, and access in the event of fire or other emergency.

There is one full access curb cut being proposed on Rosser Terrace. The City Engineer has reviewed the site plan and suggested the developer construct a southbound deceleration lane on Rosser Terrace at the new entrance. The applicant is requesting a concurrent variance for relief from the requirement to have inter-parcel access due to the limited options for connectivity from the shape of the parcel at the north and the residential uses to the west and south. The submitted site plan shows that the only pedestrian access being provided is from an ADA ramp that connects to the proposed sidewalk on Rosser Terrace. A sidewalk on Rosser Terrace will be required for the proposed development to meet the districts streetscape dimensional requirements. Dekalb Fire Department has no comments for the proposed project.

G. Whether or not the proposed use will create adverse impacts upon any adjoining land use by reason of noise, smoke, odor, dust, or vibration generated by the proposed use.

The proposed development will not generate excessive noise, nor will it emit smoke, odor, dust or vibration. The proposed use includes a restaurant with a drive-through facility. No adverse impacts by reason of noise, smoke, odor, dust, or vibration are anticipated. The ordering canopy and pick up canopy are located at the north of the site, away from the residential properties.

H. Whether or not the proposed use will create adverse impacts upon any adjoining land use by reason of the hours of operation of the proposed use.

The application states the restaurant will operate Monday through Saturday from 6 AM – 10 PM. The hours of operation are consistent with the other commercial uses along Hugh Howell.

I. Whether or not the proposed use will create adverse impacts upon any adjoining land use by reason of the manner of operation of the proposed use.

If developed in accordance with the recommended conditions, including transportation improvements, land uses along Rosser Terrace and Hugh Howell Road will not be adversely affected by the manner or operation of the development.

J. Whether or not the proposed use is otherwise consistent with the requirements of the zoning district classification in which the use is proposed to be located.

The drive-through restaurant does not specifically comply with the downtown zoning district classification, as it does not add to the Main Street atmosphere, create a dynamic development, or add to the walkability of the area. However, it should be noted that this is the relocation of an existing Chick-fil-A, also located in the DT-2 zoning classification, rather than a new fast-food restaurant with a drive-through configuration. The proposed location is located on the far east edge of the Downtown Districts.

K. Whether or not the proposed use is consistent with the policies of the comprehensive plan.

The proposed development is not consistent with the adopted comprehensive plan. The subject property is designated Downtown on the Future Land Use Map. Downtown primary land uses include retail and service commercial uses provided to the community. The Comprehensive Plan primary land uses are silent on specifics such as drive-throughs. The proposed drive-through does not comply with all of the relevant development strategy and design considerations as it does not preserve the downtown's special small-town qualities, complement the style of Tucker's older buildings, transform parking, or promote walkability. It should be noted that although this use is not specifically referenced in the Comprehensive Plan, the proposed development would be a relocation of an existing Chick-fil-A with a drive-through configuration that is also designated Downtown on the Future Land Use Map.

L. Whether or not the proposed use provides for all required buffer zones and transitional buffer zones where required by the regulations of the zoning district in which the use is proposed to be located.

The submitted site plan shows the existing 50-foot transitional buffers along the southern and western property lines, adjacent to residentially zoned properties, as being maintained.

M. Whether or not there is adequate provision of refuse and service areas.

The site plan shows a proposed dumpster and its enclosure in the southwestern corner of the parking lot, at the rear of the site. Section 46-1339 requires all dumpster must be screened from view on all four sides so as to not be visible from adjacent properties and the public street.

N. Whether the length of time for which the special land use permit is granted should be limited in duration.

Staff does not recommend any limits on the length of time of the special land use permit (if granted), so long as the applicant obtains all local licensing requirements including compliance with approved conditions and annual occupational tax certificate renewal.

O. Whether or not the size, scale and massing of proposed buildings are appropriate in relation to the size of the subject property and in relation to the size, scale and massing of adjacent and nearby lots and buildings.

It is staff's opinion that the building size, mass, and scale will be appropriate in relation to surrounding land uses.

P. Whether the proposed use will adversely affect historic buildings, sites, districts, or archaeological resources.

The proposed site is not near any historic buildings, sites, districts, or archaeological resources.

Q. Whether the proposed use satisfies the requirements contained within the supplemental regulations for such special land use permit.

The applicant does not meet all of the requirements in the supplemental regulations, Sec. 46-1166 - Drive-through facility restaurant, as shown below.

Restaurants with drive-through services shall meet the following requirements:

- A. Drive-through facilities shall not be located within sixty (60) feet of a residentially zoned property, as measured from any menu or speaker box to the property line of adjacent residential property.
 - Although the property abuts residentially zoned properties, the drive-through facilities are not located within sixty feet of them.
- B. No drive-through facility shall be located on a property less than ten thousand (10,000) square feet in area. Stacking spaces for queuing of cars shall be provided for the drive-through area as required in Article 6.
 - The property is ±2.05 acres. There is stacking for approximately 32 cars in the queue, which complies with Article 6 of the Zoning Ordinance.
- C. Drive-through lanes and service windows shall be located to the side or rear of buildings. If on a corner lot, only the pickup window may be located on the side between the principal structure and a public street.
 - The subject property is a corner lot, with frontage along Rosser Terrace and Hugh Howell Road. The submitted site plan shows the proposed drive-through lanes along both streets and located in front of the building. A requirement of a drive-through facility is that its lanes and service windows should be located to the side or rear of the building. While corner lots may have the pickup window located on the side of the building, between the principal structure and a public street, the proposal is for the menu/ordering canopy and drive through lanes to be located between the building and the public street. A concurrent variance has been requested.
- D. Drive-through canopies and other structures, where present, shall be constructed from the same materials as the primary building and with a similar level of architectural quality and detailing.
 - A full review to ensure compliance of the drive-through canopy, building, and other structures will be conducted by staff when building permits are submitted.
- E. Speaker boxes shall be pointed away from adjacent residential properties. Speaker boxes shall not play music but shall only be used for communication for placing orders.

The speaker box is pointed towards Rosser Terrace, away from adjacent residential properties. A full review to ensure compliance of the drive-through speaker box(es) will be conducted by staff when building permits and sign permits are submitted.

F. Stacking spaces shall be provided for any use having a drive-through facility or areas having drop-off and pick-up areas in accordance with the following requirements. Stacking spaces shall be a minimum of ten (10) feet wide and twenty-five (25) feet long. Stacking spaces shall begin at the last service window for the drive-through lane (typically the "pick-up" window).

The proposed stacking spaces appear to be in compliance.

G. Financial institutions with drive-through windows, car washes (automated or staffed facilities), drive- through coffee sales facilities, and any other uses with drive-through facilities with the exception of restaurants with drivethrough facilities, shall provide three stacking spaces for each window or drivethrough service facility.

Not applicable.

H. Restaurants with drive-through facilities shall provide ten (10) stacking spaces per lane for each window or drive-through service facility.

The application is in compliance. 32 stacking spaces are provided.

- I. The following general standards shall apply to all stacking spaces and drive-through facilities:
 - a. Drive-through lanes shall not impede on and off-site traffic movements, shall not cross or pass through off-street parking areas, and shall not create a potentially unsafe condition where crossed by pedestrian access to a public entrance of a building.

The drive-through lanes being located in front of the building creates a potentially unsafe condition for pedestrians. The site plan illustrates an ADA ramp that gives pedestrians access from the sidewalk on Hugh Howell Road to the building's front entrance. Pedestrians will have to cross three lanes of traffic in order to reach the building.

b. Drive-through lanes shall be separated by striping or curbing from off-street parking areas. Individual lanes shall be striped, marked or otherwise distinctly delineated.

The application is in compliance.

c. All drive-through facilities shall include a bypass lane with a minimum width of ten (10) feet, by which traffic may navigate around the drive-through facility without traveling in the drive-through lane. The bypass lane may share space with a parking access aisle.

The application is in compliance.

J. Drive-through lanes must be set back five (5) feet from all lot lines and roadway right-of-way lines.

The application is in compliance.

R. Whether or not the proposed use will create a negative shadow impact on any adjoining lot or building as a result of the proposed building height.

The proposed use will not produce an adverse shadow effect.

S. Whether the proposed use would result in a disproportionate proliferation of that or similar uses in the subject character area.

The proposed development will be a relocation of the existing Chick-fil-A, located at 4340 Hugh Howell Road. The applicant has stated the current location will close when the proposed Chick-fil-A (4435 Hugh Howell Road) opens. The proposed use will not increase the number restaurants with drive-through configurations being offered in the vicinity, however, there are three other drive-through facilities in the area. Zaxby's is located approximately 90' to the northwest; Wendy's is located approximately 135' to the southeast; and Cook Out is located approximately 535' to the southeast. The applicant has stated the existing Chick-fil-A at 4340 Hugh Howell will be demolished if this SLUP is approved, resulting in no net increase in drive-through facilities.

T. Whether the proposed use would be consistent with the needs of the neighborhood or the community as a whole, be compatible with the neighborhood, and would not be in conflict with the overall objective of the comprehensive plan.

Downtown Character Area. While the proposal is in conflict with the intent of the Downtown Character Area to create a more walkable downtown core and enhance downtown's special small-town qualities, it does comply with the other standards as this is the relocation of an existing drive-through facility and thus would not be in conflict with the strategies of the Downtown Character Area to encourage redevelopment.

CONCLUSION

While the proposed use is not completely consistent with the Downtown Character Area, staff does not believe this use would cause a disproportionate proliferation of drive-through facilities, as the proposed Chick-fil-A would be a relocation of an existing Chick-fil-A located just north of the subject property. Potential impacts can be mitigated by transportation improvements and the adherence of the 50' transitional buffer.

CONCURRENT VARIANCE (CV-21-0002) – LOCATIONAL REQUIREMENTS

The City of Tucker Zoning Ordinance includes Supplemental Regulations for restaurants with drive-through facilities. Section 46-1166(3) states "drive-through lanes and service windows shall be located to the side or rear of buildings. If on a corner lot, only the pickup window may be located on the side between the principal structure and a public street." The site plan shows the menu/ordering canopy between the building and Rosser Terrace and the drive-through lanes are located between the building

and Hugh Howell. A concurrent variance has been requested to allow a drive-through facility to be located between two public streets and the building.

Criteria for variance approval are provided in Section 46-1633 of the City of Tucker Zoning Ordinance.

CRITERIA TO BE APPLIED - CONCURRENT VARIANCE

By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of
exceptional topographic and other site conditions (such as, but not limited to, floodplain, major
stand of trees, steep slopes), which were not created by the owner or applicant, the strict
application of the requirements of this chapter would deprive the property owner of rights and
privileges enjoyed by other property owners in the same zoning district.

While the subject property is not unusual in size, narrowness, or shallowness, it is somewhat unusual in shape. Development options are limited with the corner lot and the high number of stacking spaces required by Chick-fil-A. The applicant has made modifications to their standard menu/ordering canopy to improve aesthetics along the frontage.

The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.

The requested variance does go beyond the minimum necessary to afford relief by allowing the drive-through to be located in front of the building. The other drive-through restaurants located along Hugh Howell, including the existing Chick-fil-A at 4340 Hugh Howell Road, have their drive-through facilities located on the side and rear of the buildings. Section 46-1166 (3) states that drive-through lanes and service windows shall be located to the side or rear of the buildings.

3. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.

The granting of the variance may be detrimental to the public welfare, per Section 46-1166(9)a which states, "drive-through lanes shall not create a potentially unsafe condition where crossed by pedestrian access to a public entrance of a building." S

4. The literal interpretation and strict application of the applicable provisions or requirements of this chapter would cause undue and unnecessary hardship.

The literal interpretation and strict application of the applicable provisions or requirements of this chapter would not cause undue and unnecessary hardship as there is space to locate the drive-through lanes behind the building, however, it would push the building back away from Hugh Howell which is not in line with the Downtown Zoning District.

5. The requested variance would be consistent with the spirit and purpose of this chapter and the Comprehensive Plan text.

The proposed variance would not be in line with the Downtown Character Area's intent to promote walkability with design elements that privilege pedestrian and bicyclist over the automobile and incentivize new walkway connectivity. The proposed location of the drive-through in front of the building does not privilege pedestrians and bicyclists over the automobile. The submitted site plan shows only one pedestrian access from Hugh Howell Road. Pedestrians would then have to cross three lanes to enter the building. However, the installation of streetscape requirements along both frontages does improve pedestrian elements within the city.

Conclusion: Staff recommends DENIAL of CV-19-0002.

CONCURRENT VARIANCE (CV-21-0003) – SETBACK REQUIREMENTS

The City of Tucker Zoning Ordinance includes dimensional requirements for the Downtown Districts which includes a 5' minimum setback/no maximum setback along Hugh Howell and a 0' minimum/20' maximum along Rosser Terrace. Section 46-986 *Dimensional requirements* for Downtown Districts explains that a maximum front setback can be increased when an open space, such as a park or plaza, is provided between the respective building and the adjacent street. The applicant's submitted site plan does not meet this provision for an increased setback.

A concurrent variance has been requested to increase the maximum building setbacks along Rosser Terrace to 65'.

Criteria for variance approval are provided in Section 46-1633 of the City of Tucker Zoning Ordinance.

CRITERIA TO BE APPLIED - CONCURRENT VARIANCE

By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of
exceptional topographic and other site conditions (such as, but not limited to, floodplain, major
stand of trees, steep slopes), which were not created by the owner or applicant, the strict
application of the requirements of this chapter would deprive the property owner of rights and
privileges enjoyed by other property owners in the same zoning district.

While the subject property is not unusual in size, narrowness, or shallowness, it is somewhat unusual in shape; however, the parcel could be developed with the building pushed closer to Rosser Terrace. The need for two drive-through lanes and a by-pass lane pushes the building past the 20' maximum front building setback along Rosser Terrace.

2. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.

The requested variance does not go beyond the minimum necessary to afford relief by allowing the proposed restaurant to be setback more than the maximum along Rosser Terrace as the applicant is only asking to increase the maximum setback to 65'.

3. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.

The granting of the variance may be detrimental to improvements in the zoning district. The Downtown Character Area encourages developments be built closer to the street to create a better pedestrian experience. The applicant is asking for this variance in order to place drive-through lanes between the building and Rosser Terrace. This creates a potential unsafe condition for pedestrians.

4. The literal interpretation and strict application of the applicable provisions or requirements of this chapter would cause undue and unnecessary hardship.

The literal interpretation and strict application of the applicable provisions or requirements of this chapter would not cause undue and unnecessary hardship as Section 46-986 states that when a maximum front setback applies it may be increased when an open space, such as park or plaza, is provided between the respective building and the adjacent street. The applicant is requesting to increase the maximum setback in order to locate drive-through lanes between the building and street. It should be noted that there is no setback maximum for Hugh Howell Road.

The requested variance would be consistent with the spirit and purpose of this chapter and the Comprehensive Plan text.

The intent for the Downtown Character Area of the Comprehensive Plan is to encourage greater density, including allowances for zero-lot line development for both commercial and residential uses. The design considerations for the Downtown Character Area encourage buildings to be closer to street frontage and require parking in the rear. While the proposed site plan meets the parking standards, the requested variance for increased setbacks would not be in line with the Comprehensive Plan.

Conclusion: Staff recommends DENIAL of CV-19-0003.

CONCURRENT VARIANCE (CV-21-0004) – REQUIRED INTER-PARCEL ACCESS

The City of Tucker Zoning Ordinance requires inter-parcel access for all new developments in the Downtown Tucker Zoning Districts. Section 46-989 (b) states "Inter-parcel access for vehicles between abutting and nearby properties must be provided so that access to individual properties can be achieved between abutting and nearby developments as an alternative to forcing all movement onto highways and public roads, unless the community development director during the land disturbance

permitting process determines that it is unnecessary to provide inter-parcel access due to the unlikelihood of patrons traveling among abutting or nearby sites, or due to inability after reasonable efforts by the property owner to obtain legal permission." A concurrent variance has been requested for relief from the requirement to provide inter-parcel access.

Criteria for variance approval are provided in Section 46-1633 of the City of Tucker Zoning Ordinance.

CRITERIA TO BE APPLIED – CONCURRENT VARIANCE

By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of
exceptional topographic and other site conditions (such as, but not limited to, floodplain, major
stand of trees, steep slopes), which were not created by the owner or applicant, the strict
application of the requirements of this chapter would deprive the property owner of rights and
privileges enjoyed by other property owners in the same zoning district.

While the subject property is not unusual in size, narrowness, or shallowness, it is somewhat unusual in shape. Inter-parcel access to the west is not possible because of how the properties are developed with buildings at the rear. Connectivity to the northwest is challenged due to the shape and limited size of the parcel.

2. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.

The requested variance does not go beyond the minimum necessary to afford relief by allowing the parcel to be developed without inter-parcel access due to the challenges with the commercial properties to the northwest and west and the remaining residential properties.

3. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.

The granting of the variance may be detrimental to the public welfare, as it will force all movements onto Hugh Howell and Rosser Terrace. However, transportation improvements such as a deceleration lane and right turn lane will help limit the impact.

4. The literal interpretation and strict application of the applicable provisions or requirements of this chapter would cause undue and unnecessary hardship.

The literal interpretation and strict application of the applicable provisions or requirements of this chapter could cause undue and unnecessary hardship given the challenges with interparcel connectivity with the surrounding parcels.

5. The requested variance would be consistent with the spirit and purpose of this chapter and the Comprehensive Plan text.

While the spirit and purpose of the proposal may be consistent with much of the comprehensive plan text, the regulation regarding inter-parcel access is to allow access for vehicles between properties as an alternative to forcing all movement onto highways.

Conclusion: Staff recommends APPROVAL of CV-19-0004.

Staff Recommendation

Based on the findings and conclusions herein, Staff recommends APPROVAL of Land Use Petition SLUP-21-0004, DENIAL of CV-21-0002, DENIAL of CV-21-0003, and APPROVAL of CV-21-0004, subject to the following conditions.

- 1. The property should be developed in general conformance with the site plan submitted on August 9, 2021, with revisions to meet these conditions.
- 2. A landscape plan shall be submitted with the Land Disturbance Permit, subject to the review and approval of the Planning and Zoning Director.
- 3. A mix of trees, shrubs, and ground cover shall be planted in the landscape strip between the drive-through restaurant and both Hugh Howell Road and Rosser Terrace to screen the appearance of the drive-through lanes from the street.
- 4. The drive-through canopies, windows, and lanes shall comply with the requirements of Section 46-995 and Section 46-1166.
- 5. Outdoor dining shall meet the requirements outlined in Section 46-998.
- 6. The drive-through establishment shall close no later than 10:00 p.m.
- 7. The Special Land Use Permit shall not be able to be transferred to another business.
- Owner/ Developer shall provide direct pedestrian entrances from Hugh Howell Road and Rosser Terrace. The required pedestrian entrances must face the public street and provide ingress and egress.
- 9. Owner/Developer shall remove the existing billboard located on the northwestern portion of the property.
- 10. Inter-parcel access is not required (CV-21-0004).
- 11. Owner/Developer shall install six foot (6') wide sidewalk with a five foot (5') wide landscape strip along the entire frontage of Rosser Terrace and Hugh Howell Road.
- 12. The development shall be limited to one (1) full access driveway on Rosser Terrace. Curb cut locations are subject the sight distance requirements and the approval of the City Engineer.
- 13. Owner/Developer shall construct a northbound right turn lane on Rosser Terrace at the intersection of Hugh Howell Road, subject to the approval of the City Engineer and the Georgia Department of Transportation.
- 14. Owner/Developer shall construct a southbound deceleration lane on Rosser Terrace at the new entrance, subject to the approval of the City Engineer.
- 15. Owner/Developer shall dedicate at no cost to the City of Tucker such additional right-of-way as required to construct the above improvements and have a minimum of two feet (2') from the back of the future sidewalk.

- 16. Owner/Developer shall provide ADA compliant pedestrian connectivity between the sidewalks along both frontages and the building entrance.
- 17. Owner/Developer shall comply with Section 14-39 of the City of Tucker Code of Ordinances concerning tree protection and replacement. A minimum tree density of thirty (30) units/acre shall be required. Any specimen trees removed during the redevelopment shall require additional tree replacement units as required in the ordinance.
- 18. Owner/Developer shall provide stormwater management in compliance with Tucker's Post Construction Stormwater Management Ordinance.

PLANNING COMMISSION RECOMMENDATION

Based upon the findings and conclusions herein, at its September 17, 2021 public hearing, the Planning Commission recommends APPROVAL WITH CONDITIONS of SLUP-21-0004, DENIAL of CV-21-0002,

DENIAL of **CV-21-0003**, and **APPROVAL** of **CV-21-0004** subject to the following amended staff conditions: (additions = **bold**; deletions = **strikethrough**).

- 1. The property should be developed in general conformance with the site plan submitted on August 9, 2021, with revisions to meet these conditions.
- 2. A landscape plan shall be submitted with the Land Disturbance Permit, subject to the review and approval of the Planning and Zoning Director.
- 3. A mix of trees, shrubs, and ground cover shall be planted in the landscape strip between the drive-through restaurant and both Hugh Howell Road and Rosser Terrace to screen the appearance of the drive-through lanes from the street.
- 4. The drive-through canopies, windows, and lanes shall comply with the requirements of Section 46-995 and Section 46-1166.
- 5. Outdoor dining shall meet the requirements outlined in Section 46-998.
- 6. The drive-through establishment shall close no later than 10:00 p.m.
- 7. The Special Land Use Permit shall not be able to be transferred to another business.
- 8. Owner/ Developer shall provide direct pedestrian entrances from Hugh Howell Road and Rosser Terrace. The required pedestrian entrances must face the public street and provide ingress and egress.
- 9. Owner/Developer shall remove the existing billboard located on the northwestern portion of the property.
- 10. Inter-parcel access is not required (CV-21-0004).
- 11. Owner/Developer shall install six foot (6') wide sidewalk with a five foot (5') wide landscape strip along the entire frontage of Rosser Terrace and Hugh Howell Road.
- 12. The development shall be limited to one (1) full access driveway on Rosser Terrace. Curb cut locations are subject the sight distance requirements and the approval of the City Engineer.
- 13. Owner/Developer shall construct a northbound right turn lane on Rosser Terrace at the intersection of Hugh Howell Road, subject to the approval of the City Engineer and the Georgia Department of Transportation. <u>Further evaluation of transportation-traffic-safety features will be undertaken to provide additional guidelines with respect to the condition.</u>
- 14. Owner/Developer shall construct a southbound deceleration lane on Rosser Terrace at the new entrance, subject to the approval of the City Engineer. **Further evaluation of transportation**-

traffic-safety features will be undertaken to provide additional guidelines with respect to the condition.

- 15. Owner/Developer shall dedicate at no cost to the City of Tucker such additional right-of-way as required to construct the above improvements and have a minimum of two feet (2') from the back of the future sidewalk.
- 16. Owner/Developer shall provide ADA compliant pedestrian connectivity between the sidewalks along both frontages and the building entrance.
- 17. Owner/Developer shall comply with Section 14-39 of the City of Tucker Code of Ordinances concerning tree protection and replacement. A minimum tree density of thirty (30) units/acre shall be required. Any specimen trees removed during the redevelopment shall require additional tree replacement units as required in the ordinance.
- 18. Owner/Developer shall provide stormwater management in compliance with Tucker's Post Construction Stormwater Management Ordinance.

DEPARTMENT COMMENTS

DEKALB COUNTY DEPARTMENT OF WATERSHED MANAGEMENT

No comments. Sewer capacity approval has already been obtained for this project.

DEKALB COUNTY FIRE MARSHAL OFFICE

No comments.

DEKALB COUNTY SCHOOL SYSTEM

Not applicable.

CITY ENGINEER

- 1. The development shall be limited to one (1) full access driveway on Rosser Terrace. Curb cut locations are subject the sight distance requirements and the approval of the City Engineer.
- 2. Owner/Developer shall install a 5' sidewalk along the entire frontage of Rosser Terrace.
- 3. Owner/Developer shall construct a northbound right turn lane on Rosser Terrace at the intersection of Hugh Howell Road, subject to the approval of the City Engineer and the Georgia Department of Transportation.
- 4. Owner/Developer shall construct a southbound deceleration lane on Rosser Terrace at the new entrance, subject to the approval of the City Engineer.
- 5. Owner/Developer shall dedicate at no cost to the City of Tucker such additional right-of-way as required to construct the above improvements and have a minimum of two feet (2') from the back of the future sidewalk.
- 6. Owner/Developer shall provide ADA compliant pedestrian connectivity between the sidewalks along both frontages and the building entrance.
- 7. Owner/Developer shall comply with Section 14-39 of the City of Tucker Code of Ordinances concerning tree protection and replacement. A minimum tree density of thirty (30) units/acre shall be required. Any specimen trees removed during the redevelopment shall require additional tree replacement units as required in the ordinance.
- 8. Owner/Developer shall provide stormwater management in compliance with Tucker's Post Construction Stormwater Management Ordinance.

Planning and Zoning 1975 Lakeside Parkway, Suite 350

Tucker, GA 30084 Phone: 678-597-9040

Email: permits@tuckerga.gov Website: www.tuckerga.gov

Land Use Petition Application

Type of Application. X Cor	ncurrent Variance	one Fian Amendment ☐ Modi		remit		
	APPLICANT IN	NFORMATION				
Applicant is the: Property Own	ner 🗆 Owner'	s Agent 🗵 Co	ntract Purchaser			
Name: Chick-fil-A, Inc.						
Address: 5200 Buffington Road						
City: Atlanta	State: GA		Zip: 30349			
Contact Name: Jennifer Santelli						
Phone: 770-324-5282		Email: jenn.san	telli@cfacorp.con	า		
OWNER INFORMATION						
Name: John Poulakis						
Address: 1610 DeKalb Avenue						
City: Atlanta	State: GA		Zip: 30307			
Contact Name: John Poulakis						
Phone: 404-536-7601		Email: cookiepo	ulakis@hotmail.c	om:		
	PROPERTY IN	IFORMATION				
Property Address: 4435 Hugh Hov	well Road Tucker	, GA 30084				
Present Zoning District(s): DT-2		Requested Zoning	g District(s):			
Present Land Use Category: Downto	own Corridor	Requested Land l	Jse Category:			
Land District: 18	Land Lot(s): 214	6	Acreage: 2.05			
Proposed Development: Chick-fil-	A Restaurant					
Concurrent Variance(s): N/A						
	RESIDENTIAL D	DEVELOPMENT				
No. of Lots/Dwelling Units:	Dwelling Unit Size	e (Sq. Ft.):	Density:			
N	ON-RESIDENTIA	L DEVELOPMEN	IT			
No. of Buildings/Lots: 1	Total Building Sq.	Ft.: 4,989	Density: .056	RECEIVED		
				City of Tucker		

AUG 09 2021

LAND USE PETITION APPLICATION - REVISED JULY 15, 2020

Community Development Department

APPLICANT'S CERTIFICATION

THE UNDERSIGNED BELOW STATES UNDER OATH THAT THEY ARE AUTHORIZED TO MAKE THIS APPLICATION. THE UNDERSIGNED IS AWARE THAT NO APPLICATION OR REAPPLICATION AFFECTING THE SAME LAND SHALL BE ACTED UPON WITHIN 24 MONTHS FROM THE DATE OF LAST ACTION BY THE MAYOR AND CITY COUNCIL.

Public Deciclopation Plan Report

· Delta in Tip West Transport

Sailing Till the

Fer Santelli, Principal Development Lead

and a man and an extreme an efficient fembra, fembra, ement, obpointing in the bear of the system has been possible, the mostle's former.

districted manufactions of the activation of promotion about who you reached o

to the control of the basis as every the entire we so give not be a

Conv. A course of the contract of the employ of

Court att end their in that spelling

Type or Print Name and Title

Signature of Notary Public

According to

were the conservation of the state of the st

A less than a for free comment for each the property of

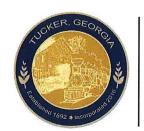
1. The spreading components of energy as compact to the property starts

Notary Seal

RECEIVED

AUG 09 2021

Community Development Department


Page 29 of 197

LAND USE PETITION APPLICATION - REVISED JULY 15, 2020

SLUP-21-0004, CV-21-0002, CV-21-0003

EXPIRES GEORGIA APR. 18, 2023

City of Tucker

Planning and Zoning 1975 Lakeside Parkway, Suite 350

Tucker, GA 30084 Phone: 678-597-9040

Email: permits@tuckerga.gov Website: www.tuckerga.gov

Land Use Petition Application

Type of Application: ☐ Rezoning ☐ Comprehensive Plan Amendment ☐ Special Land Use Permit ☐ Modification						
	APPLICANT II	NFORMATION				
Applicant is the: Property Own	er 🗌 Owner'	s Agent □ Co	ntract Purchaser			
Name: Bowman Consulting	*					
Address: 950 North Point Parkway Suite 200						
City: Alpharetta	State: GA		Zip: 30005			
Contact Name: Bridgette Ganter						
Phone: (678) 606-5278 Email: bganter@bowman.com						
OWNER INFORMATION						
Name: John Poulakis	Name: John Poulakis					
Address: 1610 DeKalb Avenue						
City: Atlanta	State: GA		Zip: 30307			
Contact Name: John Poulakis						
Phone: 404-536-7601		Email: cookiepo	ulakis@hotmail.com			
	PROPERTY IN	IFORMATION				
Property Address: 4435 Hugh Hov	well Road Tucker	, GA 30084				
Present Zoning District(s): DT-2		Requested Zoning	g District(s):			
Present Land Use Category: Downto	own Corridor	Requested Land l	Jse Category:			
Land District: 18	Land Lot(s): 214		Acreage: 2.05			
Proposed Development: Chick-fil-	A Restaurant					
Concurrent Variance(s): N/A						
	RESIDENTIAL D	DEVELOPMENT				
No. of Lots/Dwelling Units:	Dwelling Unit Size	e (Sq. Ft.):	Density:			
N	ON-RESIDENTIA	AL DEVELOPMEN				
No. of Buildings/Lots: 1	Total Building Sq.	Ft.: 4,989	Density: .056 RECEIVED City of Tucker			

AUG 09 2021

LAND USE PETITION APPLICATION - REVISED JULY 15, 2020

Community Development
Department

APPLICANT'S CERTIFICATION

THE UNDERSIGNED BELOW STATES UNDER OATH THAT THEY ARE AUTHORIZED TO MAKE THIS APPLICATION. THE UNDERSIGNED IS AWARE THAT NO APPLICATION OR REAPPLICATION AFFECTING THE SAME LAND SHALL BE ACTED UPON WITHIN 24 MONTHS FROM THE DATE OF LAST ACTION BY THE MAYOR AND CITY COUNCIL.

Vsu'dgettl Sante

8/13/21

Date

Bridgette Ganter, Branch Manager Type or Print Name and Title

MATTHEW ROBERTS

NOTARY PUBLIC Cherokee County State of Georgia My Comm. Expires July 29, 2022

Signature of Notary Public

Notary Seal

RECEIVED City of Tucker

AUG 09 2021

Community Development Department

PROPERTY OWNER'S CERTIFICATION

I do solemnly swear and attest, subject to criminal penalties for false swearing, that I am the legal owner, as reflected in the records of DeKalb County, Georgia, of the property identified below, which is the subject of the attached Land Use Petition before the City of Tucker, Georgia. As the legal owner of record of the subject property, I hereby authorize the individual named below to act as the applicant in the pursuit of the Application for Rezoning (RZ), Comprehensive Plan Amendment (CA), Special Land Use Permit (SLUP), Modification (M) & Concurrent Variance (CV) in request of the items indicated below.

l,	John Poulakis	, authorize,	Chick-fil-A, Inc.
	(Property Owner)		(Applicant)
to file for	SLUP	, at	4435 Hugh Howell Road
	(RZ, CA, SLUP, M, CV)		(Address)
on this date	8	11	.20 2/
	(Month)	(Day)	

- I understand that if a rezoning is denied or assigned a zoning classification other than the classification requested in the
 application, then no portion of the same property may again be considered for rezoning for a period of twenty-four (24)
 months from the date of the mayor and city councils' final decision.
- I understand that if an application for a special land use permit affecting all or a portion of the same property for which an
 application for the same special land use was denied shall not be submitted before twenty-four (24) months have passed
 from the date of final decision by the mayor and city council on the previous special land use permit.
- I understand that failure to supply all required information (per the relevant Applicant Checklists and requirements of the Tucker Zoning Ordinance) will result in REJECTION OF THE APPLICATION.
- I understand that preliminary approval of my design plan does not authorize final approval of my zoning or signage request. I agree to arrange additional permitting separately, after approval is obtained.
- I understand that representation associated with this application on behalf of the property owner, project coordinator, potential property owner, agent or such other representative shall be binding.

Signature of Property Owner

Date

John Poulakis

Type or Print Name and Title

Signature of Notary Public

08-11-2021

Date

PAMELA L. BUTTERSNITZ
Notary Public, Georgia
Notary Sealekalb County
My Commission Expires

8/11/21

City of Tucker

AUG 09 2021

Community Development Department

Page 32 of 197

DISCLOSURE REPORT FORM

WITHIN THE (2) YEARS IMMEDIATELY PRECEDING THE FILING OF THIS ZONING PETITION HAVE YOU, AS THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, OR AN ATTORNEY OR AGENT OF THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, MADE ANY CAMPAIGN CONTRIBUTIONS AGGREGATING \$250.00 OR MORE OR MADE GIFTS HAVING AN AGGREGATE VALUE OF \$250.00 TO THE MAYOR OR ANY MEMBER OF THE CITY COUNCIL.

CIRCLE ONE:	Party to Petition (If party to petition, complete sections 2, 3 and 4 below)					
			国际的国际企业的企业			
	in Opposition to Pe	ution (if in opposition	, proceed to sections 3 and 4 below)			
List all individuals or I	ousiness entities which	have an ownership	interest in the property which is the sub	ject		
this rezoning petition						
11.		5.				
2.	1.7.4.3	6.				
3.	· / / / / / / / / / / / / / / / / / / /	7.				
4.		8.				
Name of Government	160 1 140	Date of	Enumeration and Description of Gift V	alue		
Official Official	Amount	Contribution	at \$250.00 or more	alue		
		2 3 miles				
			The second secon			
	<u> </u>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		I is suite	A CONTRACTOR OF THE PARTY OF TH			
The undersigned ackn	owledges that this disc	losure is made in a	accordance with the Official Code of Georg	tia.		
Section 36-67A-1 et. s	eq. Conflict of interest est knowledge, inform	in zoning actions, a ation and belief.	and that the information set forth herein i	s tru		
	.: Con Can be	Ui				
Name (print) Ven	more songe		The second secon			

Page 33 of 197

Community Development
Department

DISCLOSURE REPORT FORM

WITHIN THE (2) YEARS IMMEDIATELY PRECEDING THE FILING OF THIS ZONING PETITION HAVE YOU, AS THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, OR AN ATTORNEY OR AGENT OF THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, MADE ANY CAMPAIGN CONTRIBUTIONS AGGREGATING \$250.00 OR MORE OR MADE GIFTS HAVING AN AGGREGATE VALUE OF \$250.00 TO THE MAYOR OR ANY MEMBER OF THE CITY COUNCIL.

CIRCLE	ONE: Y	YES (if YES, complete points 1 throu	gh 4);		NO (if NO, complete only point 4)			
1.	CIRCLE ONE:	Party to Petition (If par	Party to Petition (If party to petition, complete sections 2, 3 and 4 below)					
		In Opposition to Petit	t ion (If in oppo	sition, p	proceed to sections 3 and 4 below)			
2.	List all individuals	s or business entities which h	ave an owne	rship i	interest in the property which is the subject of			
	this rezoning pet							
	1.	*		5.				
	2.			6.				
	3.		-	7.				
	4.		3.7	8.				
3.	CAMPAIGN CONT		Date of		Enumeration and Description of Gift Valued			
	Official	Amount	Contributi	on	at \$250.00 or more			
	20°		A					
	26 MA							
		¥ 1						
4.	Section 36-67A-1 to the undersigne	et. seq. Conflict of interest in ed's best knowledge, information	zoning action tion and beli	ns, an	ccordance with the Official Code of Georgia, and that the information set forth herein is true			
	Name (print)	Bridgette Gant	1	-	Date: 8/13 Paris Tucker			
	Signature: 180	y oyen Journ			AUG 09 2021			

Community Development
Department

LAND USE PETITION APPLICATION AREYSEED DECEMBER 9, 2020

DISCLOSONE	
_	
VELOCIAL FORM	

WITHIN THE (2) YEARS IMMEDIATELY PRECEDING THE FILING OF THIS ZONING PETITION HAVE YOU, AS THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, OR AN ATTORNEY OR AGENT OF THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, MADE ANY CAMPAIGN MEMBER OF THE CITY COUNCIL. CONTRIBUTIONS AGGREGATING \$250.00 OR MORE OR MADE GIFTS HAVING AN AGGREGATE VALUE OF \$250.00 TO THE MAYOR OR ANY

CIRCLE ONE:

YES (If YES, complete points 1 through 4);

NO JY NO, complete only point 4)

CIRCLE ONE:

Party to Petition (If party to petition, complete sections 2, 3 and 4 below)

In Opposition to Petition (If in opposition, proceed to sections 3 and 4 below)

List all individuals or business entities which have an ownership interest in the property which is the subject of

this rezoning petition:

2.

7. 6. 5

w

CAMPAIGN CONTRIBUTIONS:

			Name of Government Official
			Total Dollar Amount
			Date of Contribution
			Enumeration and Description of Gift Valued at \$250.00 or more

Name (print) John Pouklakis

to the undersigned's best knowledge, information and belief.

Section 36-67A-1 et. seq. Conflict of interest in zoning actions, and that the information set forth herein is true The undersigned acknowledges that this disclosure is made in accordance with the Official Code of Georgia,

4.

Signature:

LAND USE PETITION APPLICATION - REVISED DECEMBER 9, 2020

SLUP-21-0004, CV-21-0002, CV-21-0003, CV-21-0004

Date:

CEIVED of Tucker

09 2021

artment Development

Page 35 of 197

Bowman

August 13, 2021

City of Tucker Planning and Zoning Department 1975 Lakeside Parkway, Suite 350 Tucker, GA 30084

RE: Special Land Use Permit Application – Proposed Chick-fil-A Tucker 4435 Hugh Howell Road Tucker, GA 30084

Dear Ms. Thomas,

Bowman is submitting this application for a Special Land Use Permit with three concurrent variances on behalf of Chick-fil-A, Inc. The existing Chick-fil-A at 4340 Hugh Howell Road is located on a site that does not provide adequate drive-through facilities. The size of the lots precludes an in-place re-design according to Chick-fil-A's new standards, which include an isolated drive-through with two full lanes, as well as order and pick up canopies. Implementation of this re-design is necessitated by the popularity of Chick-fil-A, growing traffic concerns at the existing restaurant, and Chick-fil-A's desire to serve customers in a safer and more efficient manner. This new site layout is being implemented across the country.

Chick-fil-A is proposing to relocate the existing restaurant to a larger parcel at 4435 Hugh Howell Road in order to implement the re-design of the drive-through. The existing Chick-fil-A will close when the new Chick-fil-A opens. The proposed $\pm 4,978$ SF restaurant with drive-through, associated parking, drives, and utilities will be located on a ± 2.05 -acre parcel at the southwest corner of Hugh Howell Road and Rosser Terrace. The larger site provides adequate area for two drive-through lanes plus a bypass lane with adequate length to maintain on-site queuing, as well as order point and pick up canopies. The drive-through is isolated from the parking area to provide safe and efficient service to customers.

Bowman is submitting the enclosed information in support of an application for a Special Land Use Permit to allow for the operation of a drive-through restaurant in the DT-2 (Downtown Corridor) zoning district.

Along with the Special Land Use Permit, Chick-fil-A is requesting three concurrent variances:

Variance #1: Relief from requirement prohibiting drive-through facilities between public street and

building.

Variance #2: Relief from maximum building setbacks along Hugh Howell Road and Rosser Terrace.

Variance #3: Relief from requirement to provide inter-parcel access.

Additional information is included in the application materials. Please let us know if anything else is needed. Please feel free to reach out to myself at Bowman or Jennifer Santelli, Chick-fil-A development manager, if there are any questions.

RECEIVED
City of Tucker

AUG 09 2021

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 **bowmanconsulting.com**

Community Development Department Sincerely,

VSuidgette Santer
Bridgette Ganter

bganter@bowmanconsulting.com

678-606-5278

Bowman

RECEIVED
City of Tucker

AUG 09 2021

Community Development Department

Bowman

Special Land Use Permit Criteria

Chick-fil-A Tucker 4435 Hugh Howell Road Tucker, GA 30084

PERMIT REQUEST: OPERATION OF FAST-FOOD RESTAURANT WITH DRIVE-THROUGH

Section 46-985 and Table 3.1 of the City of Tucker municipal code require a Special Land Use Permit for a proposed use of restaurant with a drive-through configuration in the DT-2 Downtown Corridor zoning district.

Criteria in support of Chick-fil-A's proposed use of restaurant with drive-through facility:

1. Adequacy of the size of the site for the use contemplated and whether or not adequate land area is available for the proposed use including provision of all required yards, open space, off-street parking, and all other applicable requirements of the zoning district in which the use is proposed to be located.

The subject site is ± 2.05 acres and consistent with the size parcel required by Chick-fil-A to construct a $\pm 4,989$ SF restaurant with adequate parking facilities and a dual lane drive-through of sufficient length to prevent queue spill on to adjacent roads.

The site provides 43% open space, which exceed the requirement of 20% open space for non-residential uses in the DT-2 Downtown Corridor zoning district.

Required number of parking spaces is based on building square footage, at a minimum rate of one space per 150 square feet of building area with a maximum of 1 space per 75 square feet. The site provides 62 spaces, which meets the minimum requirement of 33 spaces, while not exceeding the maximum requirement of 66 spaces.

The maximum building setbacks from both the Hugh Howell Road and Rosser Terrace right-of-ways is 20 feet. The applicant will pursue a variance for relief from this requirement, due to proposed drive-through design to provide maximum stack, as well as pedestrian safety.

The rear maximum building setback of 20-feet is met.

A 50-feet transitional buffer adjacent to residential uses is required and provided. Additionally, drive-through facilities must be located a minimum of 60 feet from residential uses. The site layout also supports this requirement.

A 10-feet landscape buffer is required and provided to screen parking areas.

RECEIVED
City of Tucker

AUG 09 2021

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 bowmanconsulting.com

Community Development
Department

Page 38 of 197

2. Compatibility of the proposed use with adjacent properties and land uses and with other properties and land uses in the district.

The proposed use is fast-food restaurant. Several fast-food restaurants are in the vicinity, including an existing Chick-fil-A restaurant approximately 0.3 miles from the proposed site. The existing Chick-fil-A will be closed when the new restaurant opens.

3. Adequacy of public services, public facilities, and utilities to serve the proposed use.

All necessary utilities (water, sewer, power, and natural gas) are available either on-site or in the adjacent Hugh Howell Road right-of-way. DeKalb County has approved sewer capacity for a fast-food restaurant at this site.

4. Adequacy of the public street on which the use is proposed to be located and whether or not there is sufficient traffic-carrying capacity for the use proposed so as not to unduly increase traffic and create congestion in the area.

The site is located at the unsignalized intersection of Hugh Howell Road, a four-lane arterial road with center two-way left turn lane, and Rosser Terrance, a two-lane feeder street. A traffic study, conducted in June 2021, determined that the intersection would benefit from a right turn lane from northbound Rosser Terrace on to eastbound Hugh Howell Road. The addition of the right turn lane will move traffic more expediently through the intersection to minimize congestion.

5. Whether or not existing land uses located along access routes to the site will be adversely affected by the character of the vehicles or the volume of traffic generated by the proposed use.

Existing land use along Hugh Howell Road are similar in character to the proposed use of a fast-food restaurant, and includes a variety of retail, as well as restaurant uses. Since the existing Chick-fil-A restaurant, which is located 0.3 miles away and also accessed via Hugh Howell Road, is closing upon the opening of the new Chick-fil-A, no adverse effects and additional traffic are anticipated.

6. Adequacy of ingress and egress to the subject property and to all proposed buildings, structures, and uses thereon, with particular reference to pedestrian and automotive safety and convenience, traffic flow and control, and access in the event of fire or other emergency.

Vehicle ingress and egress will be provided from Rosser Terrace. Site layout provides adequate drive aisles for access and circulation through the site for customers, as well as fire and delivery vehicles.

Pedestrian access is provided via a proposed sidewalk connection to a proposed sidewalk in the Hugh Howell Road right-of-way.

Chick-fil-A is designing new sites, included this site, with an isolated drive-through for the purpose of providing pedestrian safety in parking areas. Dine in customers do not need to cross the drive-through lanes at any point to enter the restaurant.

7. Whether or not the proposed use will create adverse impacts upon any adjoining land use by reason of noise, smoke, odor, dust, or vibration generated by the proposed use.

RECEIVED
City of Tucker

AUG 09 2021

The existing land use is a restaurant. Chick-fil-A will also operate restaurant. The drive-through is located as far as possible from adjacent non-commercial uses and is operationally designed in a manner to move vehicles through the site expediently. No adverse impacts to the adjoining land use by reason of noise, smoke, odor, dust, or vibration are anticipated.

8. Whether or not the proposed use will create adverse impacts upon any adjoining land use by reason of the hours of operation of the proposed use.

The Chick-fil-A restaurant will operate Monday through Saturday from 6 AM – 10 PM, similar to the existing use, as well as nearby uses and is not expected to have an adverse impact on adjoining properties.

- 9. Whether or not the proposed use will create adverse impacts upon any adjoining land use by reason of the manner of operation of the proposed use.
 - Chick-fil-A will operate a drive-through restaurant which will not create adverse impacts on any adjoining land uses. Several drive-through restaurants operate in the nearby vicinity.
- 10. Whether or not the proposed use is otherwise consistent with the requirements of the zoning district classification in which the use is proposed to be located.

The site is located in the DT-2 Downtown Corridor zoning district which promotes a variety of mixed uses, including restaurants. The site will provide sidewalk access to Hugh Howell Road and nearby patio seating, which is consistent with the intent to provide walkability to this corridor.

11. Whether or not the proposed use is consistent with the policies of the comprehensive plan.

City of Tucker adopted a Downtown Master Plan in December 2020 to have a blueprint for growth and redevelopment of Tucker's downtown for the next 20 years. Future land use in the Downtown District is intended to include a mix of retail and office uses. Its goal is to improve walkability and neighborhood connections. The development of Chick-fil-A will provide two areas of patio seating steps from sidewalk access to Hugh Howell Road and Rosser Terrace. Additionally, Chick-fil-A will provide streetscape enhancements for Hugh Howell Road with sidewalks and landscaping. Finally, this development supports the goal of bolstering economic base, as it repurposes a vacant commercial development, has a strong history of economic success, and a reputation and track record of investment in the community and its residents.

12. Whether or not the proposed use provides for all required buffer zones and transitional buffer zones here required by the regulations of the zoning district in which the use is proposed to be located.

The maximum building setbacks from both Hugh Howell Road and Rosser Terrace right-of-way is 20 feet. The applicant will pursue a variance for relief from this requirement, due to drive-through design to provide maximum stack, as well as pedestrian safety.

The rear maximum building setback of 20-feet is met.

RECEIVED
City of Tucker

AUG 09 2021

Community Development
Department

A 50-feet transitional buffer adjacent to residential uses is required and provided. Additionally, drivethrough facilities must be located a minimum of 60 feet from residential uses. This requirement is met.

A 10-feet landscape buffer is required and provided to screen parking areas.

13. Whether or not there is adequate provision of refuse and service areas.

A double dumpster and enclosure are provided at the rear of the site. Additional trash receptacles are available at patio areas.

14. Whether the length of time for which the special land use permit is granted should be limited in duration.

The special land use permit is necessary for lifetime of the restaurant.

15. Whether or not the size, scale and massing of proposed buildings are appropriate in relation to the size of the subject property and in relation to the size, scale and massing of adjacent and nearby lots and buildings.

The Chick-fil-A building is single story and approximately 20 feet tall. It is similar in height and scale to nearby buildings.

16. Whether the proposed use will adversely affect historic buildings, sites, districts, or archaeological resources.

The proposed site is not near historic buildings, sits, districts, or archaeological resources.

17. Whether the proposed use satisfies the requirements contained within the supplemental regulations for such special land use permit.

Supplemental regulations for drive-through restaurants requiring a Special Land Use Permit are not provided. Drive-through facilities for restaurants in the City of Tucker are regulated by Section 46-116. The proposed Chick-fil-A drive-through is located 60 feet from residentially zoned properties; is not less than 10,000 SF; will be constructed in the same materials as the building; minimally uses speaker boxes, but will direct these away from residential properties and they will not play music; and will have stacking spaces that are 10 feet by 25 feet. The drive-though is, however, located between the building and the street, due to the geometry of the parcel, as well to provide a design that maximizes drive-through stack and minimizes pedestrian crossings.

18. Whether or not the proposed use will create a negative shadow impact on any adjoining lot or building as a result of the proposed building height.

The Chick-fil-A building is single story and approximately 20 feet tall. It is similar in height and scale to nearby buildings and is located near Hugh Howell Road, so is not expected to have an adverse shadow impact on adjoining properties.

RECEIVED
City of Tucker

AUG 09 2021

- 19. Whether the proposed use would result in a disproportionate proliferation of that or similar uses in the subject character area.
 - An existing Chick-fil-A restaurant is located 0.3 miles from the site and will close when the new restaurant opens. There will be no net difference in the number of fast-food restaurants in the area.
- 20. Whether the proposed use would be consistent with the needs of the neighborhood or the community as a whole, be compatible with the neighborhood, and would not be in conflict with the overall objective of the comprehensive plan.
 - Chick-fil-A has a reputation and history of being active participants in improving and serving in the communities in which they are located. They employ local residents and serve as mentors to youth in the area.

The proposed site provides sidewalk connectivity to the downtown connector, as well as two outdoor patios near the street for outdoor dining to engage the community.

RECEIVED
City of Tucker

AUG 09 2021

Community Development
Department

Bowman

Concurrent Variance Criteria

Chick-fil-A Tucker 4435 Hugh Howell Road Tucker, GA 30084

VARIANCE #1 REQUEST: ALLOW DRIVE-THROUGH FACILTY BETWEEN STREET AND BUILDING

Section 46-1166 of the City of Tucker municipal code prohibits the locations of drive-through restaurant facilities between the building and the street in the DT-2 Downtown Corridor zoning district.

Criteria in support of Chick-fil-A's site layout, which locates drive-through facilities between the building and Hugh Howell Road, as well as Rosser Terrace Road:

a. By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of exceptional topographic and other site conditions (such as, but not limited to, floodplain, major stand of trees, steep slope), which were not created by the owner or applicant, the strict application of the requirements of this division would deprive the property owner of rights and privileges enjoyed by other property owners in the same zoning district.

The subject parcel abuts Hugh Howell Road to the north, Rosser Terrace to the east and residentially zoned properties to the west and south. Section 46-1166 requires that drive-through restaurant facilities be located a minimum of 60 feet from residentially zoned parcels. Since the lot is rectangular, the available area for the drive-through is confined to a narrow section in the center of the parcel. This configuration does not provide adequate space for vehicles to circulate and greatly diminishes the available length for drive-through queue. The geometry of the parcel and the zoning designation of the adjacent parcels were not created by the owner or applicant. Strict application of these requirements will deprive Chick-fil-A of an efficient drive-through operation, which is enjoyed by nearby property owners whose businesses are not located at street intersections and do not abut residential properties.

b. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.

Request of this variance does not go beyond the minimum necessary to afford relief since drive-through design is adhering to City of Tucker ordinance requirements as much as possible. The proposed drive-through facilities are a minimum of 60 feet from residentially zoned adjacent properties and provide a bypass lane, in addition to the extra lane design employed by Chick-fil-A. Chick-fil-A will provide a vegetative screen designed to block vehicles from view, while keeping the building visible. Special privilege is not being granted.

RECEIVED
City of Tucker

AUG 09 2021

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 **bowmanconsulting.com**

Community Development Department

- c. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.
 - Grant of this variance to allow drive-through facilities between the building and streets will not be detrimental to the public, however it will allow drive-through operations to proceed expediently according to the design principles Chick-fil-A has researched and is implementing across the country to ensure that adequate stack is provided in drive-through lanes and that vehicles may enter, be served, and exit as quickly as possible without queue spill over into adjacent roadways. Chick-fil-A has a history and reputation for maintaining properties to very high standards and will be an asset to the community.
- d. The literal interpretation and strict application of the applicable provisions or requirements of this division would cause undue and unnecessary hardship.
 - Literal interpretation and strict application of the requirement that prohibits drive-through facilities between the building and street would prohibit Chick-fil-A from operating a drive-through on this parcel.
- e. The requested variance would be consistent with the spirit and purpose of this division and the comprehensive plan text.
 - The requested variance is the minimum necessary to afford relief, while maintaining the spirit and purpose of the DT-2 zoning district intent to provide a mixed-use community, with a focus on walkability and pedestrian access. Chick-fil-A proposes to locate drive-through facilities as far as possible from adjacent residential parcels and is proposing two patio areas near the street with sidewalk connectivity to the street to promote community and walkability.

RECEIVED
City of Tucker

AUG 09 2021

2

VARIANCE #2 REQUEST: RELIEF FROM MAXIMUM BUILDING SETBACKS FROM HUGH HOWELL ROAD AND ROSSER TERRACE

Section 46-986 and Table 3.2 of the City of Tucker municipal code require a maximum building setback of 20 feet from Hugh Howell Road and Rosser Terrance in the DT-2 Downtown Corridor zoning district.

Criteria in support of Chick-fil-A's site layout proposing a building setback of 45 feet from Hugh Howell Road and 65 feet from Rosser Terrace:

a. By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of exceptional topographic and other site conditions (such as, but not limited to, floodplain, major stand of trees, steep slope), which were not created by the owner or applicant, the strict application of the requirements of this division would deprive the property owner of rights and privileges enjoyed by other property owners in the same zoning district.

Due to the geometry of the parcel and adjacent residential parcels, the proposed drive-through is located between the building and both Hugh Howell Road and Rosser Terrace. Chick-fil-A's dual lane drive-through design serves customers efficiently and prevents queue spill on to adjacent roadways. The dual lane drive-throughs are a minimum of 20 feet in width. In addition, Section 46-1166 requires that all drive-through restaurant facilities provide an additional bypass lane. The extra lane, in addition to a 5 feet landscape buffer prohibit movement of the building closer to Hugh Howell Road.

Likewise, the same drive-through lanes travel between the building and Rosser Terrace. The building setback is greater in this instance because a patio and sidewalk are provided for street connectivity.

The geometry of the parcel and the zoning designation of the adjacent parcels were not created by the owner or applicant. Strict application of these requirements will deprive Chick-fil-A of an efficient drive-through operation, which is enjoyed by nearby property owners who do have locations at street intersections and abut residential properties.

b. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.

Request of this variance does not go beyond the minimum necessary to afford relief as drive-through design is adhering to City of Tucker ordinance requirements as much as possible. The proposed drive-through facilities are a minimum of 60 feet from residentially zoned adjacent properties and provide a bypass lane, in addition to the extra lane design employed by Chick-fil-A. Chick-fil-A is proposing two patios near the streets in keeping with the spirit and intent of the ordinance to promote community, walkability, and connection to the City streets.

c. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.

Granting of this variance to exceed the maximum building setbacks will not be detrimental to the public, however it will allow drive-through operations to proceed expediently according to the design

RECEIVED
City of Tucker

AUG 0 9 2021

Community Development Department

Page 45 of 197

principles Chick-fil-A has researched and is implementing across the country to ensure that adequate stack is provided in drive-through lanes and that vehicles may enter, be served, and exit as quickly as possible to avoid queue spill over into adjacent roadways. Chick-fil-A is providing two outdoor dining patios with sidewalk connectivity to the Hugh Howell streetscape to promote community and walkability.

- d. The literal interpretation and strict application of the applicable provisions or requirements of this division would cause undue and unnecessary hardship.
 - Literal interpretation and strict application of the requirement would severely diminish drive-through efficiency due to decreased stack length if the drive-through lanes were to be located at the interior of the site. Spatially, two drive-through lanes, a bypass lane, and landscape buffer will not fit into a 25 feet setback, so strict adherence would force diminished drive-through efficiency.
- e. The requested variance would be consistent with the spirit and purpose of this division and the comprehensive plan text.

The requested variance is the minimum necessary to afford relief, while maintaining the spirit and purpose of the DT-2 zoning district intent to provide a mixed-use community, with a focus on walkability and pedestrian access. Chick-fil-A proposes to locate drive-through facilities as far as possible from adjacent residential parcels and is proposing two patio areas near the street with sidewalk connectivity to the street to promote community and walkability.

RECEIVED
City of Tucker

AUG 09 2021

4

VARIANCE #3 REQUEST: RELIEF FROM INTERPARCEL ACCESS

Section 46-989 of the City of Tucker municipal code requires inter-parcel access between abutting properties in the DT-2 Downtown Corridor zoning district

Criteria in support of Chick-fil-A's site layout, which does not provide inter-parcel access with abutting parcel.

- a. By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of exceptional topographic and other site conditions (such as, but not limited to, floodplain, major stand of trees, steep slope), which were not created by the owner or applicant, the strict application of the requirements of this division would deprive the property owner of rights and privileges enjoyed by other property owners in the same zoning district.
 - Due to the geometry of the parcel and adjacent residential parcels, the proposed drive-through is located between the building and both Hugh Howell Road and Rosser Terrace. Chick-fil-A's dual lane, isolated drive-through design serves customers efficiently and prevents queue spill on to adjacent roadways. Since the parcel is rectangular with the smallest length frontage along Hugh Howell Road, space does not exist for a drive to provide inter-parcel access outside of the drive-through lanes. Due to the geometry of the parcel, inter-parcel access would need to be achieved by allowing vehicles to enter the drive-through near the order pick up point, which would greatly dimmish drive-through efficiency. Inter-parcel access currently does not exist on this site. The constraints of the lot were not created by the owner or the applicant. Strict adherence to the requirement for inter-parcel access deprives Chick-fil-A of an efficient drive-through.
- b. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.
 - Request of this variance does not go beyond the minimum necessary to afford relief as drive-through design is adhering to City of Tucker ordinance requirements as much as possible. The proposed drive-through facilities are a minimum of 60 feet from residentially zoned adjacent properties and provide a bypass lane, in addition to the extra lane design employed by Chick-fil-A.
- c. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.
 - Granting of this variance for relief from inter-parcel access will not be detrimental to the public, however it will allow drive-through operations to proceed expediently according to the design principles Chick-fil-A has researched and is implementing across the country to ensure that adequate stack is provided in drive-through lanes and that vehicles may enter, be served, and exit as quickly as possible to avoid queue spill over into adjacent roadways. Inter-parcel access does not currently exist. Additionally, the current access off Rosser Terrace moves Chick-fil-A trips off Hugh Howell Road. If inter-parcel access were provided at the west adjacent parcel, vehicles bound for Chick-fil-A could enter the site from Hugh Howell Road through the adjacent parcel.

RECEIVED
City of Tucker

AUG 0 9 2021

Community Development
Department

d. The literal interpretation and strict application of the applicable provisions or requirements of this division would cause undue and unnecessary hardship.

Literal interpretation and strict application of the requirement would severely diminish drive-through efficiency due to decreased stack length if the drive-through lanes were to be located at the interior of the site. Spatially, two drive-through lanes, a bypass lane, and landscape buffer will not fit into the frontage provided on Hugh Howell Road, so strict adherence would force diminished drive-through efficiency.

e. The requested variance would be consistent with the spirit and purpose of this division and the comprehensive plan text.

The requested variance maintains the spirit and purpose of the DT-2 zoning district intent through proposed patio areas and sidewalk and street connectivity for pedestrians. Relief from the requirement to provide inter-parcel access allows Chick-fil-A to operate an efficient drive-through that avoids queue migration to adjacent parcels and roadways.

RECEIVED
City of Tucker

AUG 09 2021

6

AUG 09 2021

mmunity Developmen Department

GeoSurvey

UTILITY NOTE

THE UNDERGROUND UTILITIES SHOWN HEREON ARE BASED ON LOCATION OF MARKINGS PROVIDED BY:

UTILITY MARKING, LLC 3042 GALA TRAIL SNELLVILLE, GA 30036 (678) 357–1946

PARKING SUMMARY 80 REGULAR 3 HANDICAP 83 TOTAL

THE SURVEYOR MAKE'S NO CUARANIEES THAT THE UNDERGROUND UTILITIES ON SHOWN COMPRISE ALL SUCK UTILITIES IN THE AREA, ETHER IN-SERVICE OR ABANDOWED. UNDERGROUND UTILITIES NOT OBSERVED OR LOCATED UTILIZING HIS TICHNOUS MAY EXIST ON THIS STEE BUT NOT BE STOWN, AND MAY FOUND UPON EXCAVATION. THE SURVEYOR FURTHER DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED ALTHOUGH THE SURVEYOR DOES CENTY THAT THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM INFORMATION AVAILABLE.

LEGEND

STANDARD ARREVIATIONS ONDITIONER
HOLE
ING SETBACK LINE

POWER LINE LIGHT POLE ELECTRIC TRANSFORMER WATER VAULT GAS VALVE GAS METER WATER VALVE WATER VALVE
WATER METER
FIRE HYDRANT
UNDERGROUND ELECTRIC LINE
UNDERGROUND GAS LINE
UNDERGROUND COMUNICATION LINE
UNDERGROUND COMUNICATION LINE
UNDERGROUND WATER LINE (xx)

THIS PLAT HAS BEEN CALCULATED FOR CLOSURE AND WAS FOUND TO BE ACCURATE WITHIN ONE FOOT IN 222.068 FEET. <u>JIN</u> INIT.

Call before you dig. **Dial 811**

SITE PHOTOGRAPHS

(3)

(5)

S17'30'38"W-CH=54.19' A=54.66' R=120.00'

BH-P2

AVATAR REAL ESTATE IV, LLC ZONED DT-2

N88'17'30"E

STANDARD SYMBOLS OVERHEAD TRAFFIC SIGNAL LIGHT POWER POLE

CLOSURE STATEMENT

IF YOU DIG

SCOTT L. NELSON

LARRY SHAMBLIN BETTY H. SHAMBLIN PER DEKALB COUNTY TAX ASSESSOR ZONED R-75

WANDA H. NELSON

DEED BOOK 10474 / PAGE 772 ZONED C-1

JOHN SANTIAGO

TOMANELLI, LLC

BRIGHTLINE PROPERTIES, LLC

REGULAR PARKING SPACE COUNT TREE POSITION INDICATOR

DEED BOOK 11432 / PAGE 492 ZONED R-75 N/F PROPERTY OF MARIA COSTOPOULOS N00'36'23"W 5.48' JOHN POULAKIS

> SHAKIR R. SHAKIR DOROTHY V. WEBER DEED BOOK 26800 / PAGE 522 ZONED R-75

#5 POFLAS

ROSSER !

GRAPHIC SCALE

SITE AREA

2.049 Acres 89.271 sf

TITLE EXCEPTIONS

THE FOLLOWING EXCEPTIONS ARE USTED IN SCHEDULE B, SECTION 2, OF A COMMITMENT FOR THE WISIRANCE, AS PREPARED BY FIDELITY MATIONAL THE INSURANCE COMPANY, COMMITMENT NO. 2016/56A, FFECTIVE DATE WARKEN 28, 2021.

13. Exement from T. F. Hott to Georgia Power Company date May 28, 1935, field June 26, 1935, and recorded in Deed Block 414, Poge 415, Debdb County, Georgia records. MAY AFFECT SITE — VAGUE DESCRIPTION OF BLANKET EASEMENT — NOT PLOTABLE

rom I. F. Holl to the State Highway Board of Georgia, dated Sonuory S, 1937, filed February 13, 1937, and recorded in Deed Book 447, Page 211, aforesoid records. AFFECTS SITE — BLANKET EASEMENT FOR DRAINAGE, CUTS, & FILLS — NOT PLOTTABLE

records.
MAY AFFECT SITE - VAGUE DESCRIPTION OF BLANKET EASEMENT - NOT PLOTTABLE Smitzay Sewe Eastment from John F. Cunningham to Dekidt Courty, Georgia, deted May 3, 1949, filed January 26, 1950, and recorded in Deed Block 731, Page 486, aftersoid records.
 AFFECTS SITE AS SHOWN.
 Smitzay Sewe Eastment from 1.5. Holt to DeKalt County, Georgia, dated January 26, 1950, and recorded in Deed Block 731, Page 431, otoresoid

records.

AFFECTS SIE AS SHOWN

18. Easement from T.S. Holt to Georgia Power Company dated August 5, 1950, filed August 29, 1950, and recorded in Beed Book 831, Page 420(b) aforesaid records.

AFFECTS SIE — BLANKET EASEMBIT — NOT PLOTTABLE

19. Parmit to Cut or Trim Trees from T.S. Holt to Georgia Power Company dated December 13, 1955, filed January 9, 1956, and recorded in Deed Book 1711. Page 25,

aforesaid records. MAY AFFECT SITE — LOCATION OF TREES TO BE TRIMMED NOT SPECIFIED IN DOCUMENT

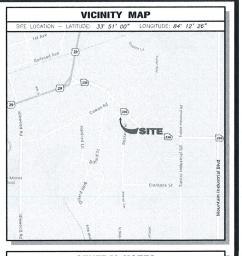
aforesoid records.
 MAY AFFECT SITE - LOCATION OF ANCHOR AND GUY POLE NOT SPECIFIED IN DOCUMENT 21. Right of Way Deed from Julian Burns to DeKalb County, Georgia, dated June 19, 1972, filed July 13, 1972, and recorded in Deed Book 2847, Page 497, aforesoid

records. AFFECTS SITE — BLANKET EASEMENT FOR DRAINAGE, CONSTRUCTION, & MAINTENANCE — NOT PLOTTABLE

NOT PLOTTABLE
22. Right of Way Deed from The Citizens and Southern Notional Bank and Jeanne
Newton McCord, as Co-Executors under the Will of Thomas A. McCord, and Julian Burns
to DeKab County, Georgia, dated June 12, 1972, filled July 13, 1972, and recorded in
Deed Book 2847, Page 489, droresold records 17, Page 498, aforesaid records. – BLANKET EASEMENT FOR DRAINAGE, CONSTRUCTION, & MAINTENANCE – –

filed June 12, 1972, and recorded in Deed Book 2830, Page 577, aforesaid re DOES NOT AFFECT SITE — LOCATION OF BOUNDARY LINE AGREEMENT SHOWN

PROPERTY DESCRIPTION


Regioning at a 5/8 inch rehar set at the intersection of the Southwester

Beginning at a 5/8 inch rebar set at the intersection of the Southwesterly right-of-way of Hugh Howell Road (Georgia Highway 236) (variable right-of-way) with the Westerly right-of-way of Rosser Terrace (50 fool right-of-way), thence along said right-of-way of Rosser Terrace South 30 degrees 33 minutes 33 seconds West, a distance of 17.64 feet to a point, thence along a curve to the left, said curve having an arc length of 54 66 feet with a rodus of 120.00 feet, being subtended by a chord bearing of 30 minutes 33 seconds West, a distance of 240 minutes 30 seconds West, a distance of 241.31 feet to a 5/8 inch rebar set; hence leaving add right-of-way North 89 degrees 22 minutes 30 seconds West, a distance of 241.31 feet to a 1/2 inch open top pipe found, thence North 00 degrees 16 minutes 23 seconds West, a distance of 59.85 feet to a 1/2 inch rebar feet with 10 minutes 30 seconds West, a distance of 59.85 feet to a 1/2 inch rebar feet with 100 degrees 10 minutes 30 seconds West, a distance of 59.80 feet to a 1/2 inch poen top pipe found, thence North 00 degrees 31 minutes 31 seconds East, a distance of 59.80 feet to a 1/2 inch poen top pipe found, thence North 00 degrees 10 minutes 30 seconds West, a distance of 59.80 feet to a 1/2 inch poen top pipe found, thence North 00 degrees 10 minutes 31 seconds East, a distance 52 minutes 32 seconds East, a distance of 92.47 feet to a 1 inch rod bound, thence North 80 degrees 10 minutes 30 seconds East, a distance of 33.70 feet to a not set, thence North 88 degrees 60 minutes 60 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58.80 feet to a 50 seconds East, a distance of 58

SURVEYOR CERTIFICATION (ALTA/NSPS)

Said tract of land contains 2.049 Acres.

Who Thuman

GENERAL NOTES

THIS SURVEY HAS BEEN PREPARED FOR THE EXCLUSIVE USE OF THE PERSON OR ENTITES NAMED HEREON. NO EXPRESS OR MIPUED WARRANTIES WITH RESPECT TO THE WORKMANDS HOWN HEREON. IS TO BE EXTENDED TO ANY PERSONS OR ENTITIES OTHER THAN THOSE SHOWN HEREON.

REVISIONS LISTED ON THIS SURVEY APPLY ONLY TO THE SPECIFIC CHANGES REFERENCED, AND DO NOT CONSTITUTE AN UPDATE OF OTHER DATA ON THIS SURVEY. THE "SURVEY DATE" SHOWN REFEON IS THE APPLICABLE DATE AS RELATED TO PROVISIONS OF STATUTES OF LIMITATION UNLESS SPECIFICALLY NOTED OTHERWISE.

THIS PROPERTY IS NOT LOCATED IN A SPECIAL FLOOD HAZARD AREA BASED ON THE FLOOD INSURANCE RATE WAP FOR THIS AREA. THE MAP NUMBER FOR THIS AREA IS 10.5090C0077, AND THE DATE OF SADI MAP IS AURUST 15, 2019. THIS DETERMINATION WAS MADE BY GRAPHICALLY OF TERMINING THE POSITION OF THIS SITE ON SAID THRU MAPS DATESS OTHERWISE MODIFIED.

PLEASE NOTE: TREES 4-INCH DBH (DIAMETER AT BREAST HEIGHT) AND LARGER WERE LOCATED FOR THIS SURVEY.

RIGHT-OF-WAY LINES SHOWN ON THIS SURVEY THAT ARE NOT ACTUAL BOUNDARIES RIGHT-UE-WAY LINES SHOWN OF THIS SOUVE THAT ARE NOT ACTORL BOUDDANE.

OF THE SUBJECT TRACT(S) ARE DEPICTED GRAFHICALLY AND ARE SHOWN
APPROXIMATELY FOR INFORMATIONAL PURPOSES ONLY. SAID RIGHT-OF-WAY LINES
SHOULD NOT BE UTILIZED FOR DESIGN PURPOSES

THE DATUM FOR THIS SITE WAS ESTABUSHED LITUZING GLOBAL POSITIONING SYSTEMS, AND BASED ON POSITIONING WALLES FOR THE WIRTUAL REFERENCE STATION NETWORK DEVLOTED BY GOTS SOLUTIONS. THE HORIZONTAL REFERENCE STATION NETWORK DEVLOTED BY GOTS SOLUTIONS. THE HORIZONTAL REFERENCE FARME IS NORTH AMERICAN DATUM OF 1983/2011)—STATE FLAME GOORDINATE SYSTEM OF COCKROLA—REST ZONE THE VERTICAL REFERENCE FRAME IS NORTH AMERICAN VERTICAL DATUM OF 1988. ANY DEMECTIONS OF BUBBLISSONS SHOWN ARE A RECTABULAR, RECOUND LEVEL PROJECTION OF THE STATE FLAME COOKRIDATE SYSTEM.

NO ZONING REPORT OR ZONING LETTER WAS PROVIDED TO THE SURVEYOR.

NO EVIDENCE OF THE SITE BEING USED AS A SOUD WASTE DUMP, SUMP OR SANITAR LANDFILL WAS OBSERVED DURING THE TIME FIELD WORK WAS PERFORMED ON THE SUBJECT PARCEL

ALL MATTERS SHOWN ON RECORDED PLATS PROVIDED TO THE SURVEYOR ARE SHOWN ON THE SURVEY

AT THE DATE OF THIS SURVEY, THE SUBJECT PROPERTY HAD ACCESS TO AND FROM A DULY DEDICATED PUBLIC RICHT-OF-WY, HUGH HOWELL ROAD AND ROSSER TERRACE. THE SURVEYOR MAKES NO CERTIFICATION AS TO WHETHER OR NOT THESE ACCESS POINTS HAVE BEEN APPROVED OR PERMITTED BY JURISHICTIONAL AUTHORITES

ENCROACHMENTS:
SEVERAL FENCES MEANDER ACROSS THE SUBJECT PROPERTY LINE AS SHOWN
SEVERAL FENCES MEANDER ACROSS THE SUBJECT PROPERTY LINE AS SHOWN
SUBJECT PROPERTY AS SHOWN. THE SUBJECT PROPERTY AS SHOWN
THE SUBJECT PROPERTY AS SHOWN. THE SUBJECT MAKES NO CERTIFICATION AS TO
WHETHER OR NOT THESE FENCES AND MIPPOWERMENTS FAME BLEEP PREMITTED OR
ALLOWED BY CURRENT OR PREVIOUS PROPERTY OBJECT NO OTHER VISIBLE
AGOVE—GROUND ENGROCHMENTS MERE GESETVED AT THE DATE OF SORTHEY.

ALTA CERTIFICATION TABLE "A" NOTES: Item 16 — No evidence of current earth moving work, building construction or building additions was observed at the date of survey.

Item 17 — No evidence was observed indicating changes in street right of way lines either completed or proposed.

SURVEYOR CERTIFICATION (GEORGIA)

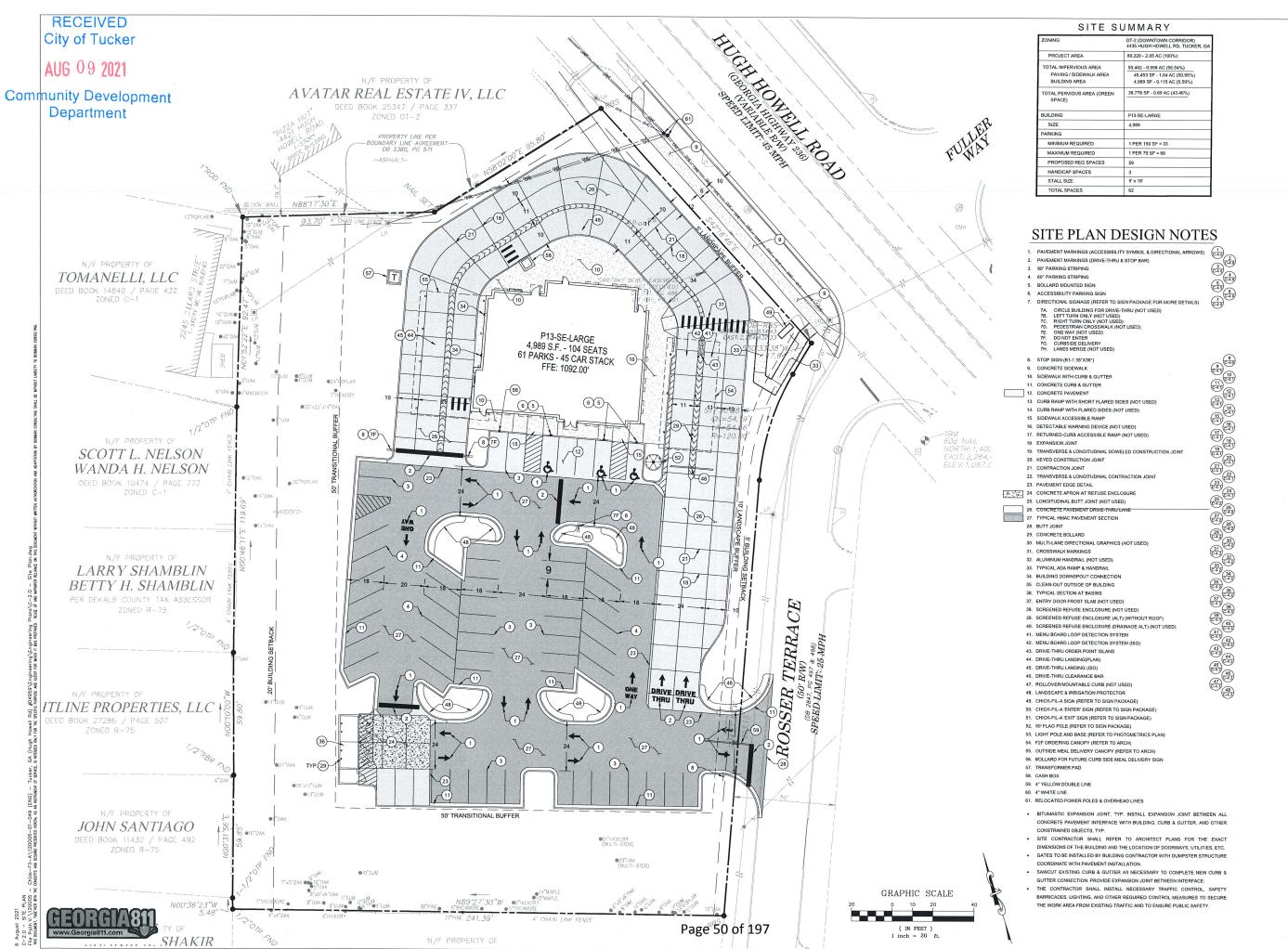
Wh Thum

ALTA/NSPS LAND TITLE SURVEY

4435 Hugh Howell Road

Land Surveying • 3D Laser Scanning 1660 Barnes Mill Road Marietta, Georgia 30062

VIEWED:


(770) 795-9900 (770) 795-8880 Phone: www.geosurvey.com EMAIL: info@geosurvey.com Certificate of Authorization #LSF-000621 Chick-fil-A, Inc.

LAND LOT: 214

DLF

JOB NO: 20216960 DRAWING SCALE REVISIONS (SEE GENERAL NOTES) CITY: TUCKER O.I. MGR: COUNTY: DEKALB STATE: GA

Fidelity National Title Insurance Company

Chick-fil-A 5200 BUFFINGTON RD Atlanta, Georgia 30349-2998

Certificate of Authorization License No. PEE-067755
950 North Point Parkway Suite 200
Apharetta, 6A 30005
Phone; (678) 374-6897
Www.bowmanorizating.com
© Boward Constituting doug, Ltd.

CHICK-FIL-A RELO TUCKER STATION FSU 4435 HUGH HOWELL ROAD TUCKER, GA 30084

FSU#04959

.....

NO DATE DES

NO. DATE DESCRIPTION

CONSULTANT PROJECT #	120005-01-049
PRINTED FOR	PCR
DATE	August 6, 2021
DRAWN BY	BCG

formation contained on this drawing and in all digital files oduced for above named project may not be reproduced in ry manner without express written or verbal consent from throited project representatives.

SITE PLAN

SHEET NUMBER

C-2.0

ATTACHED CANOPY SCHEDULE

7'-0" 4'-0" 10'-0" 5'-0"

Exterior Canopy

PERSPECTIVE VIEW - REAR LEFT

PERSPECTIVE VIEW - REAR RIGHT

PERSPECTIVE VIEW - FRONT LEFT

EXTERIOR ELEVATION
1" = 10'-0"

EXTERIOR ELEVATION
1" = 10'-0"

ROSSER TERRACE (EAST) EXTERIOR ELEVATION
1" = 10'-0"

TOTAL AREA TO ROOF = 1145 SF 100% GLAZING = 379 SF 33% BRICK = 766 SF 67%

7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	- 60	
TOTAL AREA =	1381 SF	100%
GLAZING =	379 SF	27%
BRICK =	1002 SF	73%

APPROVED AS NOTED - REVISE AND RESUBMIT

APPROVED FOR DESIGN INTENT

INITIAL: DATE:

T/ FRAMING 20'-4 1/2"

T/ SOLDIER 13'-0"

B/ CANOPY 9'-8"

OP CANOPY FINISHES

CP-1
PREFINISHED METAL
COLOR: DARK BRONZE

CP-2 METAL DECKING

COLOR: WHITE

SOUTH

EXTERIOR ELEVATION
1" = 10'-0"

PERSPECTIVE VIEW

BUILDING NOT SHOWN FOR CLARITY

PATIO SEATING SCHEDULE									
Mark	Туре	Count	Manufacturer	Model	Width	Depth	Height	Material	Finish
1	Patio Chair	32	Benchmark Design Group	BAJA SIDE STACK (2012)					
2	Patio Table - 4 Top	6	Benchmark Design Group	TAB3055-3636-AAL-WJ- UH-BDT	3'-0"	3'-0"	2'-5 1/4"		RAL 49/66220 (C34 Bronze One Coat)
3	Patio Table - 4 Top - ADA	2	Benchmark Design Group	TAB3055-3644-AAL-WJ- UH-BDT	3'-8"	3'-0"	2'-5 1/4"	Aluminim - Dark Bronze	RAL 49/66220 (C34 Bronze One Coat)
5	Patio Umbrella	4	Tuuci	OCEAN MASTER PARASOL					···.

/66220 onze One	
	CANOPY AREA
	1403 SF
	BUILDING FOOTPRINT (OUTSIDE FACE OF STUD)
	5046 SF

		GOUTSIDE FAC	
	82'-2"		
	(OUTSIDE FACE OF	STUD	
SITE PLAN 1/16" = 1'-0"	SE - LRG		

to the contract		The grant and the second	
and the second s	VER BRICK	Playground	N
*Acceptable Values: TOWER BRICK, TOWER STUCCO, TOWER BOARD,	er en j	*Acceptable Values: YES, NO	
WRAP BRICK, WRAP STUCCO	The second of th	Landscaping Type	STANDAR
Wall Framing Type: W	OOD STUD	*Acceptable Values: STANDARD	
*Acceptable Values: WOOD STUD, WOOD STUD - PREFAB, METAL STUD,		LEED Rating	NOT CERTIFIE
		*Acceptable Values: NOT CERTIFIED,	
		CERTIFIED, SILVER, GOLD, PLATINUM	
*Acceptable Values:	LINITERE	Drive Thru Stack Count:	4
Water Filtration Type:	TYPE A	*Acceptable Values: (Digits)	^** . ₹
*Acceptable Values: TYPE A, TYPE A+B, TYPE A+C, TYPE A+B+C, ETC	= /	Drive Thru Bypass Lane: *Acceptable Values:	YE
Drive-Thru:	YES	YES, NO	
*Acceptable Values: YES, NO	120	Drive Thru Number of Fulfil *Acceptable Values: (Digits)	Iment Lanes:
Industrialized Construction:	YES		up Lanes:
*Acceptable Values: YES, NO	120	Drive Thru Number of Picki *Acceptable Values: (Digits)	
Number of Parking Spaces:	59	Drive Thru Number of Orde *Acceptable Values: (Digits)	er Point Pylons:
*Acceptable Values: (Digits) Number of Accessible Parking Space	es: 3	Drive Thru Number of Pick	up Windows:
*Acceptable Values; (Digits)	,es. 3	*Acceptable Values: (Digits)	
Cross Parking:	YES	Drive Thru Door:	YE
*Acceptable Values: YES, NO		*Acceptable Values: YES, NO	
Menu Board - Interior:	YES	Square Footage:	499
*Acceptable Values: YES, NO · · · · · · · · · · · · · · · · · ·		*Acceptable Values: (Digits)	
Menu Board - Interior - Count: *Acceptable Values: (Digits)	5	Seat Count - Interior:	10
4 (14)		*Acceptable Values: (Digits)	
*Acceptable Values:	DIGITAL	Seat Count - Exterior: *Acceptable Values: (Digits)	
DIGITAL, STATIC, OTHER Menu Board - Walk-up:	NO	Canopy Type - Order Point	: DOUBL
*Acceptable Values:	NO	*Acceptable Values:	. DOUBL
YES, NO Menu Board - Walk-up - Count:	N/A	Canopy Type - Meal Delive	ry: DOUBL
*Acceptable Values: (Digits)		*Acceptable Values: DOUBLE, SINGLE	-
Menu Board - Walk-up - Type:	N/A	Number of Registers:	
*Acceptable Values: DIGITAL, STATIC, OTHER		*Acceptable Values: (Digits)	
Menu Board - Order Point: *Acceptable Values:	YES	and the second s	
YES, NO	· ·	DESIGN AP	PROVAL
Menu Board - Order Point - Count: *Acceptable Values: (Digits)			
Menu Board - Order Point - Type:	DIGITAL		

PROJECT NOTES

CONSULTANT PROJECT # PRINTED FOR PROJECT STATUS Information contained on this drawing and in all digital files produced for above named project may not be reproduced in any manner without express written or verbal consent from authorized project representatives.

SHEET DESIGN DEVELOPMENT

NO. DATE DESCRIPTION

X-900

RECEIVED
By Eprice at 12:33 pm, Aug 19, 2021

Page 51 of 197

Chick-fil-A

5200 Buffington Road

Atlanta, Georgia

30349-2998

CONSTRUCTION

August 5, 2021

City of Tucker Planning and Zoning Department 1975 Lakeside Parkway, Suite 350 Tucker, GA 30084

Re: Environmental Site Analysis Plan

1. Conformance with the Comprehensive Plan

Proposed Project

Chick-fil-A is proposing a 4,989+/- SF restaurant with a drive-through, associated parking, drives, and utilities on a ± 2.05-acre site at the southwest corner of Hugh Howell Road and Rosser Terrace. The site is in the City of Tucker with the address of 4435 Hugh Howell Road (Parcel ID 18 214 04 086). The site is currently developed with a vacant building and associated paving, parking, and landscaping.

Nearby/Surrounding Land Analysis

Adjacent Properties	Zoning	Overlay District	Existing Land Use
North	DT-2		Restaurant
South	R-75		Residential 1 family
West	C-1, R-75		Office Building – Low Rise
East (across Hugh Howell Road)	DT-2		Community Shopping Center

Conformity to Plan

Future Land Use for the site is designated as "Downtown". City of Tucker adopted a Downtown Master Plan in December 2020 to have a blueprint for growth and redevelopment of Tucker's downtown for the next 20 years. Future land use in the Downtown District is intended to include a mix of retail and office uses. Its goal is to improve walkability and neighborhood connections. The development of Chick-fil-A will provide two areas of patio seating steps from sidewalk access to Hugh Howell Road and Rosser Terrace. Additionally, Chick-fil-A will provide streetscape enhancements for Hugh Howell Road with sidewalks and landscaping. Finally, this development supports the goal of bolstering economic base, as it repurposes a vacant commercial development, has a strong history of economic success, and a reputation and track record of investment in the community and its residents.

2. Environmental Impacts of the Proposed Project

Wetlands

There are no wetlands or riparian zones located on or near the site.

Floodplains

This is site is not located in a floodplain. The site is in Zone X, according to Map 13089C0077L eff. 8/15/2019. Streams/stream buffers

There are no streams or stream buffers on this site.

RECEIVED City of Tucker

AUG 09 2021

950 North Point Parkway, Suite 200, Alpharetta, GA 30005

bowmanconsulting.com

Page 52 of 197

Slopes exceeding 25 percent over a 10-foot rise in elevation

This site does not have slopes exceeding 25 percent over a 10-foot rise in elevation.

Vegetation

The site is consistent with other commercial locations on the street. Once developed, the site will be compliant with landscaping and planting requirements.

Wildlife Species (including fish)

There is no pond or lake located on site. There is no wildlife on site, as the site was previously developed.

Archeological/Historical Sites

This site is not located on an archeological or historic site.

3. Project Implementation Measures

- a. This development is not located in an environmentally sensitive area.
- b. Although, this development is not located in a region with poor water quality, stormwater runoff will be treated prior to release into the municipal stormwater system.
- c. This site is previously developed, and development will not have any negative impacts on existing infrastructure.
- d. This development is not located on an archeological or historic site.
- e. This development is not located in an environmentally stressed community.
- f. This development will meet or exceed all green space and open space requirements.
- g. Chick-fil-A will operate from 6AM-10PM Monday-Saturday and will be closed on Sunday. Site is previously developed so no additional noise or lighting is anticipated.
- h. This development is not located within a park or recreational green space.
- i. This development is not located in a wildlife habitat.

Sincerely,

*Pridgette Santa*Bridgette Ganter

bganter@bowmanconsulting.com

678-606-5278

Bowman

TRAFFIC IMPACT STUDY

Chick-fil-A # 04959 Tucker 4431 Hugh Howell Rd, Tucker, Georgia

June 25, 2021

Prepared for: Chick-fil-A, Inc.

RECEIVEDPage 54 of 197

By Eprice at 4:58 pm, Aug 17, 2021

Bowman

Traffic Impact Study

Chick-fil-A # 04959 Tucker

4431 Hugh Howell Rd, Tucker, Georgia

Prepared June 25, 2021

Prepared for: Chick-fil-A, Inc. 5200 Buffington Road Atlanta, GA 30349 Phone: 404.214.9934

Prepared by:

Bowman

Bowman Consulting Group Certificate of Authorization License No. 30462 4450 W. Eau Gallie Blvd., Suite 144 Melbourne, FL 32934 Phone: (321) 255-5434 Fax: (321) 255-7751

Analysts: Daniela Jurado

Rodrigo Meirelles

Project Manager: Andrew Petersen, PE

06/25/2021 Bowman Job # 120005-01-049

RECEIVED

By Eprice at 4:58 pm, Aug 17, 2021

Table of Contents

Executive Summary	
1. Introduction	
Background Information	
Traffic Impact Analysis Methodology	2
3. Roadway Network	2
Intersection Characteristics	2
4. Data Collection	3
5. Traffic Forecast and Background Traffic	4
6. Trip Generation	
 7. Trip Distribution 8. Capacity Analysis 	
Capacity Analysis Comparison – No Build vs Build Conditions (Year 2022)	
9. Conclusions and Recommendations	10
List of Figures	
Figure 1. Site location.	1
Figure 2. Trip Distribution	5
List of Tables	
Table 1 Historical AADT and Annual Growth Rates	4
Table 2 Site Trip Generation	
Table 3 HCM Level of Service Criteria	
Table 4 2022 AM Peak Hour Capacity Analysis	
Table 5 2022 PM Peak Hour Capacity Analysis	
Table 6 2022 Morning Peak Hour Capacity Analysis Comparison No Build vs Improved Conditions Table 7 2022 Evening Peak Hour Capacity Analysis Comparison No Build vs Improved Conditions	
Table 7 2022 Evening Foak Floar Capacity Analysis Companson No Dalid Vs Improved Conditions	

Appendices

Appendix A: Site Plan

Appendix B: Scope/Methodology Appendix C: Traffic Counts

Appendix O: Traffic Counts

Appendix D: Traffic Volume and Traffic Distribution Exhibits

Appendix E: Chick-Fil-A Trip Generation Assessment

Appendix F: Capacity Analysis Reports

Executive Summary

This report summarizes the findings of the Traffic Impact Study performed by Bowman Consulting (BC) for the proposed 4,989 SF Chick-fil-A development with 44 Car Stack Chick-fil-A development to be located at the Southwest corner of the intersection of Hugh Howell Rd and Rosser Terrace in the City of Tucker, Georgia.

Access to the site will be provided by one (1) full-access driveway along Rosser Terrace.

The purpose of this study is threefold: to determine the number of expected trips generated by the proposed site; to determine the potential impact, if any, of the proposed development on the surrounding roadway network; and to propose improvements to mitigate the impact of the proposed development, if required.

A Traffic Impact Analysis Methodology Statement was prepared and shared with representatives from the City of Tucker and the Georgia Department of Transportation.

Turning movement counts were collected for the morning and evening peak hours at the intersections of Hugh Howell Rd & Cowan Rd, Hugh Howell Rd & Rosser Terrace, and Hugh Howell Rd & Tucker Industrial Rd.

Based on the results of the trip generation assessment prepared by Bowman Consulting, the proposed development is expected to generate a total of 261 trips during the morning peak hour and 285 trips during the evening peak hour. It is anticipated that during the morning peak hour 128 of these are existing trips, the remaining 133 are expected to be primary trips. During the evening peak hour, it is anticipated that 143 are existing trips and 142 are new trips.

For the purposes of this analysis, it is anticipated that the proposed development will be constructed and fully operational by the year 2022.

The following scenarios were evaluated as part of this study: 2022 No Build, 2022 Build and 2022 Build with Improvements.

The results of the No Build Vs Build conditions capacity analysis indicate the following:

During the morning peak hour:

All intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions, with minimal increases in the overall delay.

The northbound and southbound approaches of the intersections of Hugh Howell Rd with Cowan Rd and with Tucker Industrial Rd are expected to operate at LOS E. The eastbound and westbound left-turning lanes of the intersection with Tucker Industrial Rd are expected to operate at a LOS F during both No Build and Build Conditions; no increases in delays are expected for the above-mentioned failing approaches under Build Conditions. All other approaches are expected to operate at acceptable LOS C or better during both No Build and Build Conditions.

Bowman

Traffic Impact Study

Chick-fil-A # 04959 Tucker

Page iii

The queue results show 95th% queue lengths are not expected to exceed the available of the turn lanes for the morning peak hour, with a HCM 95% Percentile queue of 1.5 vehicles.

During the evening peak hour:

All intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions. The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience a 3.7 second increase in the overall delay; minimal increases in the overall delay are expected at all other intersections with the inclusion of the proposed development.

The northbound and southbound approaches of the intersections of Hugh Howell Rd with Cowan Rd and with Tucker Industrial Rd are expected to operate at LOS E for both No Build and Build Conditions. The eastbound and westbound left-turning movements of the intersection with Tucker Industrial Rd are expected to operate at a LOS F during both No Build and Build Conditions, minimal increases in delays are expected at the abovementioned turning movements and approaches.

The northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace is expected to degrade from LOS D to LOS F from No Build to Build conditions, with an increase in delay of 30.7 seconds. All other approaches are expected to operate at acceptable LOS C or better during both No Build and Build Conditions.

The queue results for the northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace show 95th% queue lengths of approximately 5 vehicles.

- The following improvements are proposed:
 - Intersection of Hugh Howell Rd and Rosser Terrace: provide northbound right-turn lane.

The results of the No Build Vs Build Improved conditions capacity analysis indicate the following:

• The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions with an increase in the overall delay of 1.7 seconds for the morning peak hour and 2.4 seconds for the evening peak hour.

For the morning peak hour all approaches are expected to maintain acceptable LOS with minimal increases in the overall delay with the inclusion of the proposed development. During the evening peak hour, the northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace is expected to operate at LOS E under Build with Improvements conditions, with an increase in the delay of 10.6 seconds. These capacity constraints are typical at unsignalized approaches connecting to a major road such as Hugh Howell Rd.

• The 95th% queue results for the morning peak hour show a 3-vehicle queue is expected for the evening peak hour at the northbound approach with the proposed right-turn lane.

Traffic Impact Study

Chick-fil-A # 04959 Tucker

Page iv

Based on the results of the capacity analysis the proposed development is not expected to adversely impact the surrounding roadway network with the inclusion of the proposed improvements.

1. Introduction

This report summarizes the findings of the Traffic Impact Study performed by Bowman Consulting (BC) for the proposed Chick-fil-A development to be located at the Southwest corner of the intersection of Hugh Howell Rd and Rosser Terrace in the City of Tucker, Georgia.

The purpose of this study is threefold: to determine the number of expected trips generated by the proposed site; to determine the potential impact, if any, of the proposed development on the surrounding roadway network; and to propose improvements to mitigate the impact of the proposed development, if required.

2. Background Information

The proposed development entails a 4,989 SF Chick-fil-A development with 44 Car Stack to be constructed at 4431 Hugh Howell Rd, in the City of Tucker, Georgia. **Figure 1** depicts the site location.

Figure 1. Site location.

Access to the development will be provided by one (1) full-access driveway along Rosser Terrace, no access driveways are proposed on Hugh Howell Rd. The latest Concept Plan is presented in **Appendix A**.

Traffic Impact Analysis Methodology

A Traffic Impact Analysis Methodology Statement was prepared and shared with representatives from the City of Tucker and the GDOT DeKalb County Division. A copy of the approved Traffic Impact Analysis Methodology Statement and proof of the coordination is contained in **Appendix B.**

To assess the traffic operation at the study Intersections, the following tasks were undertaken:

- Turning movement counts were collected during an average weekday for the morning (7:00 AM 9:00 AM) and evening (4:00 PM 6:00 PM) peak periods.
- Trip generation Assessment for Chick-Fil-a (CFA) facilities.
- Trip Distribution for the proposed development.
- Capacity and queuing analyses at study intersections.

3. Roadway Network

Hugh Howell Rd (GA 236): Within the identified study area is a State-maintained four-lane Minor Arterial according to the Georgia Department of Transportation State Functional Classification Map Online. Hugh Howell Rd has a continuous two-way left-turn lane (TWLTL), a southeast-northwest alignment and a posted speed limit of 45 miles per hour.

Rosser Terrace: Within the identified study area is a city-maintained two-lane undivided roadway identified as a Local road according to the City of Tucker 2019, Strategic Transportation Master Plan. Rosser Terrace has a north-south alignment and a posted speed limit of 25 miles per hour.

Tucker Industrial Rd: Within the identified study area is a city-maintained two-lane undivided roadway identified as a Local Road according to the City of Tucker Strategic 2019, Transportation Master Plan. Tucker Industrial Rd has a north-south alignment with a posted speed limit of 35 miles per hour.

Cowan Rd: Within the identified study area is a city-maintained two-lane undivided roadway identified as a Local Road according to the City of Tucker 2019, Strategic Transportation Master Plan. Cowan Rd has a northeast-southwest alignment with a posted speed limit of 25 miles per hour.

Intersection Characteristics

1. Intersection of Hugh Howell Rd and Cowan Rd/The Centre Driveway

This intersection is currently a four-legged signalized intersection where Hugh Howell Rd has a southeast-northwest alignment and Cowan Rd has a northeast-southwest alignment.

The northwest approach (Hugh Howell Road eastbound) consists of one exclusive left-turn lane, one exclusive through lane, and one shared through/right-turn lane. The southeast approach (Hugh Howell Road westbound) consists of one exclusive left-turn lane, two exclusive

Bowman

through lanes, and one exclusive right-turn lane. The southwest approach (Cowan Road Northbound) consists of one shared left-turn/through/right-turn lane. The northeast approach (Publix Driveway southbound) consists of one exclusive left-turn lane, and one shared through/right-turn lane.

2. Intersection of Hugh Howell Rd and Rosser Terrace/Fuller Way

This intersection is currently a four-legged unsignalized intersection where Hugh Howell Rd has a southeast-northwest alignment and Rosser Terrace and Fuller way have a north-south alignment.

The northwest approach (Hugh Howell Road eastbound) consists of an exclusive through lane, one shared through/right-turn lane and a continuous TWLTL. The southeast approach (Hugh Howell Road westbound) consists of two exclusive through lanes, one exclusive right-turn lane and a continuous TWLTL. The northbound approach (Rosser Terrace) consists of one shared left-turn/through/right-turn lane. The southbound approach (Fuller Way) consists of one shared left-turn/through/right-turn lane.

3. Intersection of Hugh Howell Rd and Tucker Industrial Rd

This intersection is currently a four-legged signalized intersection where Hugh Howell Rd has an east-west alignment and Tucker Industrial Rd has a north-south alignment.

The eastbound and westbound approaches consist of one exclusive left-turn lane, one exclusive through lane, and one shared through/right-turn lane. The northbound and southbound approaches have one shared left-turn/through/right-turn lane.

Proposed conditions.

As mentioned before, access to the development will be provided by one (1) full-access driveway along Rosser Terrace. No access is proposed on Hugh Howell Road.

4. Data Collection

For the purposes of this study the following data was collected:

- Inspections were conducted to obtain an inventory of existing roadway geometry, traffic control devices, and location of existing and proposed driveways.
- Published GDOT AADT counts and functional classification information.
- Turning movement counts were collected at the following intersections:
 - Hugh Howell Rd and Cowan Rd
 - Hugh Howell Rd and Rosser Terrace
 - Hugh Howell Rd and Tucker Industrial Rd

The traffic counts were completed during an average weekday, Tuesday, June 15, 2021 for the morning (7:00 AM - 9:00 AM) and evening (4:00 PM - 6:00 PM) peak periods. These counts were used to identify peak hours, determine traffic patterns, and evaluate intersection Levels of Service. The turning movement counts are presented in **Appendix C.**

5. Traffic Forecast and Background Traffic

For the purposes of this analysis, it is anticipated that the proposed development will be constructed and fully operational by the year 2022. The following scenarios were evaluated as part of this study:

- Future Conditions (2022) without the proposed development (No Build)
- Future Conditions (2022) with the proposed development (Build)
- Improved Future Conditions (2022) with the proposed development (Build with Improvements)

The 2021 Existing Turning Movement Counts are presented in Appendix D, Exhibit 1

To develop the 2022 traffic volumes, the first step was to determine a background growth rate applicable for the study area roadway segments. For each roadway segment, the annual growth rate was calculated using the historical AADT information provided by the GDOT Average Annual Daily Traffic & Historical Counts 2015-2019 information. A 0.5% minimum average annual growth rate was used for all traffic in the study area.

The historical study area roadway AADT information, as well as the applied growth rates utilized for the analysis, are presented in **Table 1.**

Table 1 Historical AADT and Annual Growth Rates

Roadway	From	to	2015	2016	2017	2018	2019	2016	2017	2018	2019	Avg Growth rate	Applied Growth rate
Hugh Howell Rd	Lawrenceville Hwy	Mountain Industrial Blvd	21,700	22,400	25,600	25,600	24,400	3.2%	14.3%	0.0%	-4.7%	3.2%	3.2%
Rosser Terrace	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Tucker Industrial Rd	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Cowan Rd	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%

Source: GDOT Average Annual Daily Traffic & Historical Counts 2015-2019

These growth rates were applied to the 2021 Existing Turning Movement to develop the 2022 No Build Traffic Volumes, depicted on **Exhibit 2** in **Appendix D.**

6. Trip Generation

The applicant is proposing to develop the site with the following land uses generating site traffic:

• 4,989 SF Chick-fil-A Restaurant with drive-thru window (Proposed)

Considering Chick-fil-A fast-food restaurants generate larger number of trips than ITE comparable land uses. BC conducted a Trip Generation Assessment based on trip generation data provided by the Atlanta Department of Transportation for three similar Chick-fil-A facilities. The trip generation assessment is presented **Appendix E**.

Table 2 displays the trip generation for the proposed development and includes the morning and evening peak hour.

Table 2 Site Trip Generation

Land Use	(1)	AADT of Adjacent	Daily Tring	Daviad	Peak	Hour Tr	ips ⁽²⁾	Pass by ⁽³⁾			Primary In Out Total 68 65 133 74 68 142		
Land Ose	Land Use Code	AADT of Adjacent Street Daily Trips Period Peak Hour Trips (2) In Out Total 934 24,400 1,893 AM 133 128 261 PM 148 137 285 tation Engineers Trip Generation, 10th Edition Assessment for Chick-Fil-A facilities and from the Institute of Transportation Engineers Trip Generation Handbook, 3rd Edition	Total	ln	Out	Total	In	Out	Total				
Fast Food restaurant	034	24.400	1 002	AM	133	128	261	65	63	128	68	65	133
with Drive thru	734	24,400		148	137	285	74	69	143	74	68	142	
(1) Based on the Institute of Transp	oortation Engineers T	rip Generation, 10th Ec	dition										
(2) Based on BC 2021 Trip Genera	tion Assessment for	Chick-Fil-A facilities											
(3) Pass-By rates of 49% were extra	acted from the Institut	e of Transportation En	gineers Trip Gei	neration Ha	andbook.	3rd Edit	ion						

The proposed development is expected to generate a total of 261 trips during the morning peak hour and 285 trips during the evening peak hour. It is anticipated that during the morning peak hour 128 of these are existing trips, the remaining 133 are expected to be primary trips. During the evening peak hour, it is anticipated that 143 are existing trips and 142 are new trips.

7. Trip Distribution

The proposed trip distribution for the site was developed based on the AADT information of the surrounding roadway network. The trip distribution for this site is presented in **Figure 2**.

Figure 2. Trip Distribution

The Primary and Pass-By trip distribution are presented in **Exhibits 3** and **4** in **Appendix D**.

The Primary and Pass-By trips are presented in **Exhibits 5** and **6** in **Appendix D**.

The CFA Site Trips are presented in **Exhibits 7** in **Appendix D**.

The CFA Site Trips were added to the 2022 No Build Traffic Volumes to yield the 2022 Build Traffic Volumes presented in **Exhibit 8** in **Appendix D**.

8. Capacity Analysis

The study intersections were analyzed for each scenario following the Highway Capacity Manual (HCM 6th edition) methodologies using the computer software Synchro 10. The analysis uses capacity, Level of Service, and control delay as the criteria for the performance of the driveways.

Capacity, as defined by the HCM, is a measure of the maximum number of vehicles in an hour that can travel through an intersection or section of roadway under typical conditions. Level of Service (LOS) is a marker of the driving conditions and perception of drivers while traveling during the given time period. LOS ranges from LOS A which represents free flow conditions, to LOS F which represents breakdown conditions. **Table 3** shows the LOS for unsignalized intersections as defined by the HCM.

Table 3 HCM Level of Service Criteria

Level of Service (LOS)	Unsignalized Intersections Average Control Delay (sec/veh)	Signalized Intersections Average Control Delay (sec/veh)
Α	≤10	≤10
В	10 - 15	10 - 20
С	15 - 25	20 - 35
D	25 - 35	35 - 55
E	35 - 50	55 - 80
F	>50	>80

Control delay is a measure of the total amount of delay experienced by an individual vehicle and includes delay related to deceleration, queue delay, stopped delay, and acceleration. **Table 3** displays the amount of control delay (in seconds per vehicle) that corresponds to the LOS for signalized and unsignalized intersections.

Capacity Analysis Comparison – No Build vs Build Conditions (Year 2022)

Capacity Analyses were conducted for the No Build and Build conditions (year 2022). The primary purpose for this approach was to compare the results to identify areas impacted by the proposed development. The capacity results are included in **Appendix F**.

The capacity results for morning peak hour are summarized in **Table 4.**

Table 4 2022 AM Peak Hour Capacity Analysis

	2022 CONDITIONS - (AM)			No Bu	iild	Buil	d
	Intersection	Approach	Movement	DELAY (S)	LOS	DELAY (S)	LOS
			L	4.4	Α	4.6	Α
		ED	Т	5.7	Α	5.9	Α
		EB	TR	5.7	Α	5.9	Α
			Approach	5.5	Α	5.8	Α
			L	5.0	Α	5.2	Α
		WB	T	0.3	Α	0.3	Α
Hu	ugh Howell Rd & Cowan Rd/The Centre Driveway	WB	R	0.1	Α	0.1	Α
			Approach	0.4	Α	0.4	Α
		NB	Approach	78.7	Е	78.6	Е
			L	68.2	Е	67.7	Е
		SB	TR	65.2	Е	64.4	Е
			Approach	66.3	Е	65.7	Е
	Intersection	-	8.4	Α	8.7	Α	
		L	9.7	Α	9.6	Α	
	EB	T	0.0	Α	0.0	Α	
		ED	TR	0.0	Α	0.0	Α
		Approach	0.6	Α	0.5	Α	
			L	0.0	Α	8.6	Α
	Hugh Howell Rd & Rosser Terrace	W.D	T	0.0	Α	0.0	Α
		WB	R	0.0	Α	0.0	Α
			Approach	0.0	Α	0.7	Α
		NB	Approach	13.6	В	18.5	С
		SB	Approach	11.2	В	11.1	В
		Intersection	-	0.7	Α	2.6	Α
			L	100.8	F	96.0	F
		ED	Т	0.3	Α	0.3	Α
		EB	TR	0.3	Α	0.3	Α
			Approach	1.6	Α	2.1	Α
			L	103.2	F	103.2	F
	Hugh Howell Rd & Tucker Industrial Rd	WD	Т	5.2	Α	5.5	Α
		WB	TR	5.2	Α	5.5	Α
			Approach	9.7	Α	9.9	Α
		NB	Approach	74.8	Е	74.6	Е
		SB	Approach	67.0	Е	66.7	Е
		Intersection	-	13.4	В	13.6	В

Based on the results of the capacity analysis during the morning peak hour, all intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions, with minimal increases in the overall delay.

The northbound and southbound approaches of the intersection of Hugh Howell Rd and Cowan Rd and the intersection of Hugh Howell Rd and Tucker Industrial Rd are expected to operate at LOS E during both No Build and Build Conditions. The eastbound and westbound left-turning movements of the intersection with Tucker Industrial Rd are expected to operate at a LOS F during both No Build and Build Conditions, minimal increases in delays are expected at the above-mentioned turning movements and approaches.

The queue results show 95th% queue lengths are not expected to exceed the available of the turn lanes for the morning peak hour, with a HCM 95% Percentile queue of 1.5 vehicles.

The capacity results for evening peak hour are summarized in **Table 5.**

Table 5 2022 PM Peak Hour Capacity Analysis

	2022 CONDITIONS - (PM)	2022 CONDITIONS - (PM)				Build	
	Intersection	Approach	Movement	DELAY (S)	LOS	DELAY (S)	LOS
1	Hugh Howell Rd & Cowan Rd/The Centre Driveway	EB	L	9.4	Α	9.5	Α
			Т	16.3	В	16.9	В
			TR	16.3	В	16.8	В
			Approach	15.5	В	16.1	В
		WB	L	11.7	В	12.2	В
			Т	0.4	Α	0.4	Α
			R	0.2	Α	0.2	Α
			Approach	1.1	Α	1.2	Α
		NB	Approach	74.2	Е	74.1	Е
		SB	L	57.6	Е	57.5	Е
			TR	56.1	E	55.7	E
			Approach	56.7	E	56.4	Е
		Intersection	-	17.5	В	17.7	В
	Hugh Howell Rd & Rosser Terrace	EB	L	10.0	Α	9.8	Α
			Т	0.0	Α	0.0	Α
			TR	0.0	Α	0.0	Α
			Approach	0.2	Α	0.2	Α
		WB	L	11.7	В	13.1	В
2			Т	0.0	Α	0.0	Α
			R	0.0	Α	0.0	Α
			Approach	0.0	Α	1.1	Α
		NB	Approach	25.3	D	56.0	F
		SB	Approach	11.9	В	11.7	В
		Intersection	-	0.6	Α	4.3	Α
	Hugh Howell Rd & Tucker Industrial Rd		L	117.2	F	108.3	F
		EB	Т	1.6	Α	1.7	Α
			TR	1.6	Α	1.7	Α
			Approach	2.0	Α	2.3	Α
		WB	L	103.1	F	103.1	F
3			Т	7.9	Α	8.3	Α
			TR	7.9	Α	8.3	Α
			Approach	14.8	В	15.0	В
		NB	Approach	77.5	Е	77.8	Е
		SB	Approach	59.7	Е	59.3	Е
		Intersection	-	14.6	В	14.8	В

Based on the results of the capacity analysis during the evening peak hour, all intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions. The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience a 3.7 second increase in the overall delay; minimal increases in the overall delay are expected at all other intersections with the inclusion of the proposed development.

Based on the results of the capacity analysis during the evening peak hour, the northbound and southbound approaches of the intersection of Hugh Howell Rd and Cowan Rd are expected to operate at LOS E during both No Build and Build Conditions. The northbound and southbound approaches of the intersection of Hugh Howell Rd and Tucker Industrial Rd are expected to operate at LOS E; the eastbound and westbound left-turning lanes are expected to operate at a LOS F during both No Build and Build Conditions, minimal increases in delays are expected at the above-mentioned turning movements and approaches.

The northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace is expected to degrade from LOS D to LOS F from No Build to Build conditions, with an increase in delay of 30.7 seconds. All other approaches are expected to operate at acceptable LOS C or better during both No Build and Build Conditions.

The queue results for the northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace show 95th% queue lengths of approximately 5 vehicles.

Capacity Analysis Comparison – No Build vs Build Improved Conditions

A Capacity Analyses comparison was conducted for the No Build and Build Improved conditions (year 2022). The primary purpose for this approach was to compare the results in order to evaluate proposed improvements. The capacity results are included in **Appendix F**.

The capacity results for morning peak hour are summarized in **Table 6**.

Table 6 2022 Morning Peak Hour Capacity Analysis Comparison No Build vs Improved Conditions

2022 CONDITIONS - (AM)				No Build		Build Improvements	
	Intersection	Approach	Movement	DELAY (S)	LOS	DELAY (S)	LOS
	Hugh Howell Rd & Rosser Terrace		L	9.7	Α	9.6	Α
		ЕВ	Т	0.0	Α	0.0	Α
		EB	TR	0.0	Α	0.0	Α
			Approach	0.6	Α	0.5	Α
			L	0.0	Α	8.6	Α
2		WB	Т	0.0	Α	0.0	Α
		WB	R	0.0	Α	0.0	Α
			Approach	0.0	Α	0.7	Α
		NB	Approach	13.6	В	16.2	С
		SB	Approach	11.2	В	11.1	В
		Intersection	-	0.7	Α	2.4	Α

Based on the results of the capacity analysis, during the morning peak hour, the intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions with an increase in the overall delay of 1.7 seconds. All approaches are expected to maintain acceptable LOS with minimal increases in the overall delay with the inclusion of the proposed development.

The 95th% queue results for the morning peak hour show a 2-vehicle queue is expected at the northbound approach with the proposed right-turn lane.

The capacity results for evening peak hour are summarized in **Table 7**.

Table 7 2022 Evening Peak Hour Capacity Analysis Comparison No Build vs Improved Conditions

2022 CONDITIONS - (PM)				No Build		Build Improvements	
	Intersection	Approach	Movement	DELAY (S)	LOS	DELAY (S)	LOS
	Hugh Howell Rd & Rosser Terrace	ЕВ	L	10.0	Α	9.8	Α
			Т	0.0	Α	0.0	Α
			TR	0.0	Α	0.0	Α
			Approach	0.2	Α	0.2	Α
		WB	L	11.7	В	13.1	В
2			Т	0.0	Α	0.0	Α
			R	0.0	Α	0.0	Α
			Approach	0.0	Α	1.1	Α
		NB	Approach	25.3	D	35.9	Е
		SB	Approach	11.9	В	11.7	В
		Intersection	-	0.6	Α	3.0	Α

Based on the results of the capacity analysis, during the evening peak hour, the intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions with an increase in the overall delay of 2.4 seconds.

Bowman

The northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace is expected to operate at LOS E under Build with Improvements conditions, with an increase in the delay of 10.6 seconds. These capacity constraints are typical at unsignalized approaches connecting to a major road such as Hugh Howell Rd.

The 95th% queue results for the evening peak hour show a 3-vehicle queue is expected at the northbound approach with the proposed right-turn lane.

Based on the results of the capacity analysis the proposed development is not expected to adversely impact the surrounding roadway network with the inclusion of the proposed improvements.

9. Conclusions and Recommendations

Based on the results of the trip generation assessment prepared by Bowman Consulting, the proposed development is expected to generate a total of 261 trips during the morning peak hour and 285 trips during the evening peak hour. It is anticipated that during the morning peak hour 128 of these are existing trips, the remaining 133 are expected to be primary trips. During the evening peak hour, it is anticipated that 143 are existing trips and 142 are new trips.

The results of the No Build Vs Build conditions capacity analysis indicate the following:

During the morning peak hour:

All intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions, with minimal increases in the overall delay.

The northbound and southbound approaches of the intersections of Hugh Howell Rd with Cowan Rd and with Tucker Industrial Rd are expected to operate at LOS E. The eastbound and westbound left-turning lanes are expected to operate at a LOS F during both No Build and Build Conditions; no increases in delays are expected for the above-mentioned failing approaches under Build Conditions. All other approaches are expected to operate at acceptable LOS C or better during both No Build and Build Conditions.

The queue results show 95th% queue lengths are not expected to exceed the available of the turn lanes for the morning peak hour, with a HCM 95% Percentile queue of 1.5 vehicles.

During the evening peak hour:

All intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions. The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience a 3.7 second increase in the overall delay; minimal increases in the overall delay are expected at all other intersections with the inclusion of the proposed development.

The northbound and southbound approaches of the intersections of Hugh Howell Rd with Cowan Rd and with Tucker Industrial Rd are expected to operate at LOS E for both No Build and Build Conditions. The eastbound and westbound left-turning movements of the intersection with Tucker Industrial Rd are expected to operate at a LOS F during both No

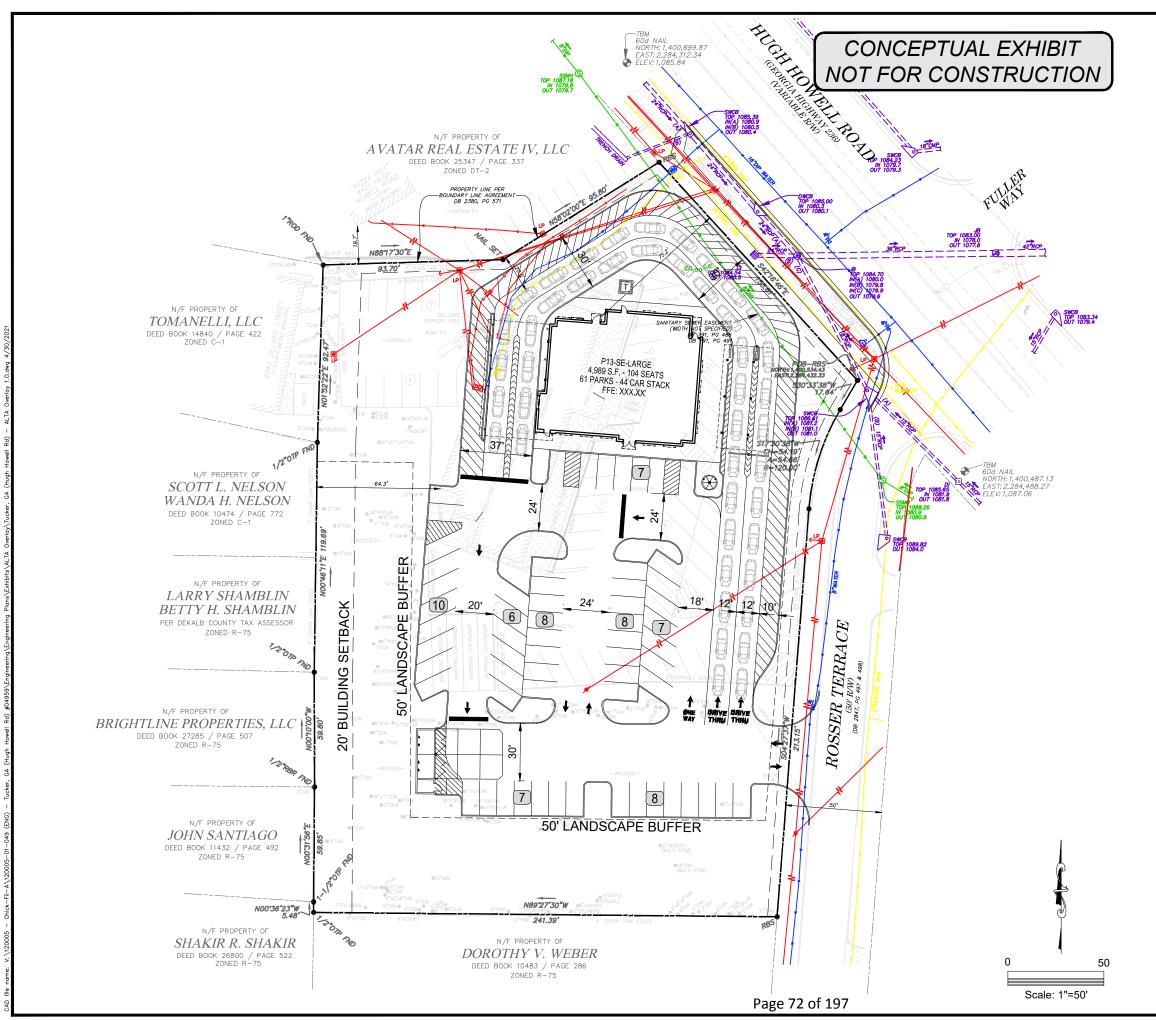
Build and Build Conditions, minimal increases in delays are expected at the abovementioned turning movements and approaches.

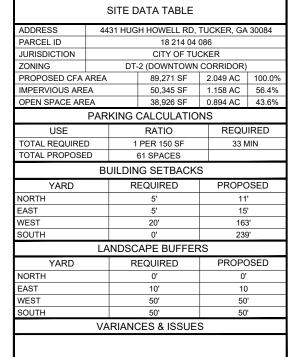
The northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace is expected to degrade from LOS D to LOS F from No Build to Build conditions, with an increase in delay of 30.7 seconds. All other approaches are expected to operate at acceptable LOS C or better during both No Build and Build Conditions.

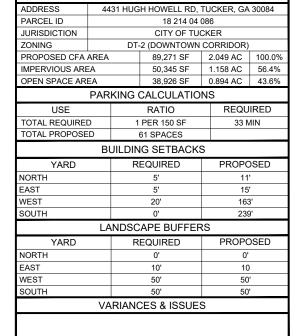
The queue results for the northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace show 95th% queue lengths of approximately 5 vehicles.

The following improvements are proposed:

- Intersection of Hugh Howell Rd and Rosser Terrace: provide northbound right-turn lane.


The results of the No Build Vs Build Improved conditions capacity analysis indicate the following:


- The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions with an increase in the overall delay of 1.7 seconds for the morning peak hour and 2.4 seconds for the evening peak hour.
 - For the morning peak hour all approaches are expected to maintain acceptable LOS with minimal increases in the overall delay with the inclusion of the proposed development. During the evening peak hour, the northbound approach of the intersection of Hugh Howell Rd and Rosser Terrace is expected to operate at LOS E under Build with Improvements conditions, with an increase in the delay of 10.6 seconds. These capacity constraints are typical at unsignalized approaches connecting to a major road such as Hugh Howell Rd.
- The 95th% queue results for the morning peak hour show a 3-vehicle queue is expected for the evening peak hour at the northbound approach with the proposed right-turn lane.


Based on the results of the capacity analysis the proposed development is not expected to adversely impact the surrounding roadway network with the inclusion of the proposed improvements.

APPENDIX A

PROPERTY LINE BUILDING SETBACK LINE

PARKING COUNT

OVERLAY EXHIBIT

RD,

CONCEPTUAL DESIGN

GA

TUCKER, HUGH HOWEL R
CHICK-FIL-A
HUGH HOWELL RD &
ROSSER TERRACE

SCALE: 1" = 50'

VERSION

APPENDIX B

Rodrigo Meirelles

From: Ken Hildebrandt <KHildebrandt@Tuckerga.gov>

Sent: Wednesday, June 9, 2021 5:23 PM

To: Daniela Jurado

Cc: Andrew Petersen; Rodrigo Meirelles

Subject: [EXTERNAL] RE: [External] RE: Chick-fil-A Tucker Methodology Coordination

Yes, these will be a good representation.

KEN HILDEBRANDT, PE, PTOE CITY ENGINEER

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Wednesday, June 9, 2021 4:15 PM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>; Rodrigo Meirelles <rmeirelles@bowman.com>

Subject: [External]RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Good Afternoon Ken,

We received some trip generation information today of some CFA locations in the Great Atlanta area, average weekday (M-Th) information from 2 months in 2019 and February 2021 when school was in session. The locations are the following:

- 1- 2580 Piedmont Rd
- 2- 2340 N Druid Hills Rd
- 3- 1100 Northside Dr

Sincerely,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov >

Sent: Wednesday, June 9, 2021 8:23 AM **To:** Daniela Jurado djurado@bowman.com

Cc: Andrew Petersen <apetersen@bowman.com>; Rodrigo Meirelles <rmeirelles@bowman.com>

Subject: [EXTERNAL] RE: [External] RE: Chick-fil-A Tucker Methodology Coordination

What is the ADT on the street in Miami? Is it a comparable site?

KEN HILDEBRANDT, PE, PTOE CITY ENGINEER

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Tuesday, June 8, 2021 2:21 PM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>; Rodrigo Meirelles <rmeirelles@bowman.com>

Subject: [External]RE: Chick-fil-A Tucker Methodology Coordination

Good Afternoon Ken,

For the trip generation of the CFA we have conducted a trip generation study for a CFA in the Miami Dade area. Is it possible for us to use this trip generation study results to evaluate the trip generation for this site?

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Daniela Jurado

Sent: Tuesday, June 8, 2021 8:47 AM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov> **Subject:** RE: Chick-fil-A Tucker Methodology Coordination

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Sent: Tuesday, June 8, 2021 8:36 AM

To: Daniela Jurado <djurado@bowman.com>

Subject: [EXTERNAL] Chick-fil-A Tucker Methodology Coordination

DeKalb County maintains our traffic signals. You may be able to get this information from Demetria Allen. dfchambliss@dekalbcountyga.gov

KEN HILDEBRANDT, PE, PTOE CITY ENGINEER

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado < djurado@bowman.com >

Sent: Tuesday, June 8, 2021 8:28 AM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov >; Rodrigo Meirelles < rmeirelles@bowman.com >; Courtney Smith

<<u>CSmith@Tuckerga.gov</u>>; Kylie Thomas <<u>kthomas@tuckerga.gov</u>>

Cc: Andrew Petersen apetersen@bowman.com>

Subject: [External]RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Good Morning Ken,

Is there a way we can get the signal phasing and timings for the intersections of Hugh Howell Rd and Tucker Industrial Rd and Hugh Howell Rd and Cowan Rd?

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov >

Sent: Monday, June 7, 2021 3:21 PM

To: Daniela Jurado < djurado@bowman.com>; Rodrigo Meirelles < rmeirelles@bowman.com>; Courtney Smith

<<u>CSmith@Tuckerga.gov</u>>; Kylie Thomas <<u>kthomas@tuckerga.gov</u>>

Cc: Andrew Petersen <apetersen@bowman.com>

Subject: [EXTERNAL] RE: [External]RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

No further comments at this time.

KEN HILDEBRANDT, PE, PTOE **CITY ENGINEER**

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado < djurado@bowman.com >

Sent: Monday, June 7, 2021 3:18 PM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov >; Rodrigo Meirelles < rmeirelles@bowman.com >; Courtney Smith

<CSmith@Tuckerga.gov>; Kylie Thomas <kthomas@tuckerga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>

Subject: [External]RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Thank you Ken,

We will start working on the best locations to get this data collected. Besides the trip generation, is there any other comments on the proposed methodology?

Sincerely,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Sent: Monday, June 7, 2021 12:46 PM

To: Daniela Jurado djurado@bowman.com; Rodrigo Meirelles rmeirelles@bowman.com; Courtney Smith

<CSmith@Tuckerga.gov>; Kylie Thomas <kthomas@tuckerga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>

Subject: [EXTERNAL] RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Again, I think that a Chick fil-A is a different animal and is not accurately represented in this trip generation category.

KEN HILDEBRANDT, PE, PTOE **CITY ENGINEER**

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Monday, June 7, 2021 9:53 AM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>; Rodrigo Meirelles < rmeirelles@bowman.com>; Courtney Smith

<<u>CSmith@Tuckerga.gov</u>>; Kylie Thomas <<u>kthomas@tuckerga.gov</u>>

Cc: Andrew Petersen apetersen@bowman.com>

Subject: [External]RE: Chick-fil-A Tucker Methodology Coordination

Good Morning Ken,

Would it be possible for us to use the ITE mean values plus one standard deviation. That would leave the following trip generation:

Mean

Land Use	Land Use Code ⁽¹⁾	Size	Daily Trips	Period	Peak Hour Trips			Pass by ⁽²⁾		
Lairu ose	Land Use Code.	Size Daily ITIps	I CIIIO	In	Out	Total	ln	Out	To	
Fast Food restaurant with Drive thru	934	4.989	1893 -	AM	103	98	201	50	48	9
rastrood restaurant with Drive tiru	234	4,303		PM	8.5	78	163	42	36	8

- (1) Based on the Institute of Transportation Engineers Trip Generation, 10th Edition
- (1) Pass-By rates of 49% were extracted from the Institute of Transportation Engineers Trip Generation Handbook, 3rd Edition

Mean +1 std dev

Land Use	Land Use Code ⁽¹⁾ Size Daily Trips	Ci zo	Daily Trips	Period	Peak Hour Trips			Pass by ⁽²⁾		
Land Ose		renou	In	Out	Total	ln	Out	To		
for ford and an arms with first when	0.54	4,989	1893 AM	AM	175	169	344	86	6.3	1.6
Fast Food restaurant with Drive thru	934	4,303		PM	131	121	252	64	59	12

(1) Based on the Institute of Transportation Engineers Trip Generation, 10th Edition

(1) Pass-By rates of 49% were extracted from the Institute of Transportation Engineers Trip Generation Handbook, 3rd Edition

Would you agree with this approach?

Thank you,

DANIELA JURADO

Project Manager | **BOWMAN**

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Sent: Monday, June 7, 2021 8:18 AM

 $\textbf{To:} \ \mathsf{Rodrigo} \ \mathsf{Meirelles} \\ & < \underline{\mathsf{rmeirelles}} \\ & \mathsf{bowman.com} \\ >; \ \mathsf{Courtney} \ \mathsf{Smith} \\ & < \underline{\mathsf{CSmith}} \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Tuckerg$

<kthomas@tuckerga.gov>

Cc: Daniela Jurado <<u>djurado@bowman.com</u>>; Andrew Petersen <<u>apetersen@bowman.com</u>>

Subject: [EXTERNAL] Chick-fil-A Tucker Methodology Coordination

Rodrigo,

A Chick fil-A restaurant is rather unique and does not fit in the mold of Code 934 for a Fast Food Restaurant. Actual trip generation will be significantly higher. A more accurate estimate would be to provide counts at an existing comparably sized Chick fil-A.

You can call me at the number below with any questions.

KEN HILDEBRANDT, PE, PTOE CITY ENGINEER

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Rodrigo Meirelles < rmeirelles@bowman.com>

Sent: Thursday, June 3, 2021 10:18 AM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>; Courtney Smith < CSmith@Tuckerga.gov>; Kylie Thomas

<kthomas@tuckerga.gov>

Cc: Daniela Jurado djurado@bowman.com">djurado@bowman.com; Andrew Petersen apetersen@bowman.com>

Subject: [External]Chick-fil-A Tucker Methodology Coordination

Good Morning Ken, Courtney, and Kylie,

I am contacting you regarding a Chick-fil-A project at 4431 Hugh Howell Rd, Tucker, GA. The site will be replacing the existing Presbyterian Church. Attached you will find a Methodology Statement with the Trip Generation for this site and a Current Site Plan.

We want to schedule a meeting with the City of Tucker to verify that our methodology for this Traffic Impact Study is acceptable. Could you reply to this email with the best time for you to discuss this project?

Thank you in advance.

Sincerely,

RODRIGO MEIRELLES VAN VLIET

Engineer I | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934

O: (321) 270-8905

rmeirelles@bowman.com | bowman.com

Rodrigo Meirelles

From: Rodrigo Meirelles

Sent: Wednesday, June 9, 2021 10:48 AM

To: Mathis, Renaldo M

Cc: Daniela Jurado; Andrew Petersen

Subject: RE: Chick-fil-A Tucker Methodology Coordination - GDOT

That will work, thank you very much Renaldo. Can you please include Daniela Jurado (<u>djurado@bowman.com</u>) and Andrew Petersen (<u>apetersen@bowman.com</u>) to the meeting invite as well?

Sincerely,

RODRIGO MEIRELLES VAN VLIET

Engineer I | **BOWMAN** O: (321) 270-8905 rmeirelles@bowman.com

From: Mathis, Renaldo M < RMathis@dot.ga.gov>

Sent: Wednesday, June 9, 2021 10:35 AM

To: Rodrigo Meirelles < rmeirelles @bowman.com>

Subject: [EXTERNAL] RE: Chick-fil-A Tucker Methodology Coordination - GDOT

I will set the meeting on Microsoft teams for Tuesday at 1.

Thanks.

Renaldo M. Mathis

Civil Engineer II Serving City of Atlanta & DeKalb County

District 7 Office of *Traffic Operations* 5025 New Peachtree Road Chamblee, GA, 30341 770.216.3993 office 404.655.8946 mobile

From: Rodrigo Meirelles < rmeirelles @bowman.com >

Sent: Wednesday, June 9, 2021 10:20 AM **To:** Mathis, Renaldo M <RMathis@dot.ga.gov>

Cc: Daniela Jurado <djurado@bowman.com>; Andrew Petersen <apetersen@bowman.com>

Subject: RE: Chick-fil-A Tucker Methodology Coordination - GDOT

Hello Renaldo,

Sorry for misspelling your name at first. Either one of these days will work for us. Let us know what time works best for you and your manager.

Thank you,

RODRIGO MEIRELLES VAN VLIET

Engineer I | **BOWMAN** O: (321) 270-8905

rmeirelles@bowman.com

From: Mathis, Renaldo M < RMathis@dot.ga.gov>

Sent: Wednesday, June 9, 2021 9:35 AM

To: Rodrigo Meirelles < rmeirelles@bowman.com >

Subject: [EXTERNAL] RE: Chick-fil-A Tucker Methodology Coordination - GDOT

Good morning Rodrigo,

I can set a meeting for sometime early next week if that works for you. I m going to speak with my manager to see what times work best based on the day you prefer. I'm thinking sometime Monday or Tuesday. How does these dates sound to you?

Thanks,

Renaldo M. Mathis

Civil Engineer II Serving City of Atlanta & DeKalb County

District 7 Office of *Traffic Operations* 5025 New Peachtree Road Chamblee, GA, 30341 770.216.3993 office 404.655.8946 mobile

From: Rodrigo Meirelles < rmeirelles @bowman.com >

Sent: Wednesday, June 9, 2021 9:12 AM

To: Mathis, Renaldo M <RMathis@dot.ga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>; Daniela Jurado <djurado@bowman.com>

Subject: RE: Chick-fil-A Tucker Methodology Coordination - GDOT

Good Morning Ronaldo,

I wanted to follow up on my previous email and see if you received my previous email with the attached methodology for this project, and if there is any additional information you require for the TIA of this project.

Please do not hesitate to contact us.

Thank you in advance,

RODRIGO MEIRELLES VAN VLIET

Engineer I | BOWMAN

O: (321) 270-8905

rmeirelles@bowman.com

From: Rodrigo Meirelles

Sent: Thursday, June 3, 2021 2:06 PM

To: rmathis@dot.ga.gov

Cc: Andrew Petersen <apetersen@bowman.com>; Daniela Jurado <djurado@bowman.com>

Subject: Chick-fil-A Tucker Methodology Coordination - GDOT

Good Morning Ronaldo,

I am contacting you regarding a Chick-fil-A project at 4431 Hugh Howell Rd, Tucker, GA. The site will be replacing the existing Presbyterian Church. Attached you will find a Methodology Statement with the Trip Generation for this site and the most recent Site Plan.

We want to schedule a meeting with the GDOT to verify that our methodology for this Traffic Impact Study is acceptable. Could you reply to this email with the best time for you to discuss this project?

Thank you in advance.

Sincerely,

RODRIGO MEIRELLES VAN VLIET

Engineer I | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934

O: (321) 270-8905

rmeirelles@bowman.com | bowman.com

Georgia is a state of natural beauty. And it's a state that spends millions each year cleaning up litter that not only mars that beauty, but also affects road safety, the environment and the economy. Do your part – don't litter. How can you play an active role in protecting the splendor of the Peach State? Find out at http://keepgaclean.com/.

TRAFFIC IMPACT STUDY CHICK-FIL-A, TUCKER, GA SCOPING/METHODOLOGY STATEMENT

Scoping M	eeting Date:	Electronic Coo	rdination	
Applicant's	s Consultant:	Bowman Cons	ulting Group	
Applicant's	s Contact inform	ation:	Andrew J Petersen (3	321 -270 - 8987 / apetersen@bowman.com)
			D : 1 1 /224	270 0077 / 11 1 01
			Daniela Jurado (321	-270 - 8977 / djurado@bowman.com)
(1) LOCAT	ION OF PROPOSE	D PROJECT:	4431	. Hugh Howell Rd, Tucker, GA 30084, See Figure 1.
	Municipality:		City of Tucker, GA	
County			DeKalb County	
(2) DESCR	IDTION OF DROD	SED DROIECT.		
(2) DESCR	Hugh Howell Rd Terrace. Trip generation i	velopment comp in the city of Tuck rates were extrac	ker, Georgia. Access to tl	Fast-food restaurant with drive-thru window with 44 car stack, located at 4431 ne development will be provided by one (1) full-access driveway along Rosser Transportation Engineers 10th Edition. The trip generation is presented in Table
(3) PURPC	impact, if any, of Capacity analyse warrant analyses	the study is three the proposed de s will be prepare s will be complete	evelopment on the roadv d for the No Build, Build	umber of trips generated by the proposed site; to determine the potential vay network; to propose improvements, if required. conditions, and Build Conditions with Improvements (if required). Turn lane Hugh Howell Rd and Rosser Terrace. The results of the study will be summarized
(4) DEVEL	OPMENT SCHEDU	LE:		
	Anticipated Op	ening Date:	2	022
	Analysis Date:		2	022
(5) STUDY	-Hugh Howell F	d and Rosser To	errace (Unsignalized Ir ndustrial Rd (Signalized d (Singalized Intersect	Intersection)
(6) STUDY	AREA TYPE:	Urban	:x	Rural:
(7) ANAIY	SIS PERIODS AND	TIMES:		
(2) 2000	AM Peak hour		7:00 AM - 09:00 AM	
	PM Peak hour		4:00 PM - 06:00 PM	

(8) TRAFFIC ADJUSTMENT FACTORS:

(a) Seasonal Adjustment: To be determined upon coordination

(b) Annual Base Traffic Growth:

See Table 2

Source:

Approximate Growth average from AADT's

GDOT Traffic Count Data online

(9) OTHER PROJECTS WITHIN STUDY AREA TO BE ADDED TO BASE TRAFFIC:

To be determined upon coordination

(10) APPROVAL OF DATA COLLECTION ELEMENTS AND METHODOLOGIES:

Proposed Location	Period (Avg Day)	<u>Type</u>
-Hugh Howell Rd and Rosser Terrace	AM/PM	Turning Movement Counts
-Hugh Howell Rd and Tucker Industrial Rd	AM/PM	Turning Movement Counts
-Hugh Howell Rd and Cowan Rd	AM/PM	Turning Movement Counts

(11) CAPACITY/LOS ANALYSIS

<u>Location</u>	Period (Avg Day)	<u>Type</u>
-Hugh Howell Rd and Rosser Terrace	AM/PM	Synchro (HCS)
-Hugh Howell Rd and Tucker Industrial Rd	AM/PM	Synchro (HCS)
-Hugh Howell Rd and Cowan Rd	AM/PM	Synchro (HCS)

(12) ROADWAY IMPROVEMENTS/MODIFICATIONS BY OTHERS TO BE INCLUDED:

To be determine upon coordination

(13) OTHER NEEDED ANALYSES:

(a) Signal Warrant Analysis:

No

(b) Required Signal Phasing/Timing Modifications:

TBD

- (c) Analysis of the Need for Turning Lanes:
 - -Hugh Howell Rd and Rosser Terrace (Unsignalized Intersection)
- (d) Turning Lane Lengths:

95th Percentile Synchro Queue

(14) ADDITIONAL COMMENTS OR RECOMMENDATIONS RELATIVE TO THE SCOPE OF THIS PROJECT:

TRAFFIC IMPACT STUDY SCOPING/METHODOLOGY STATEMENT

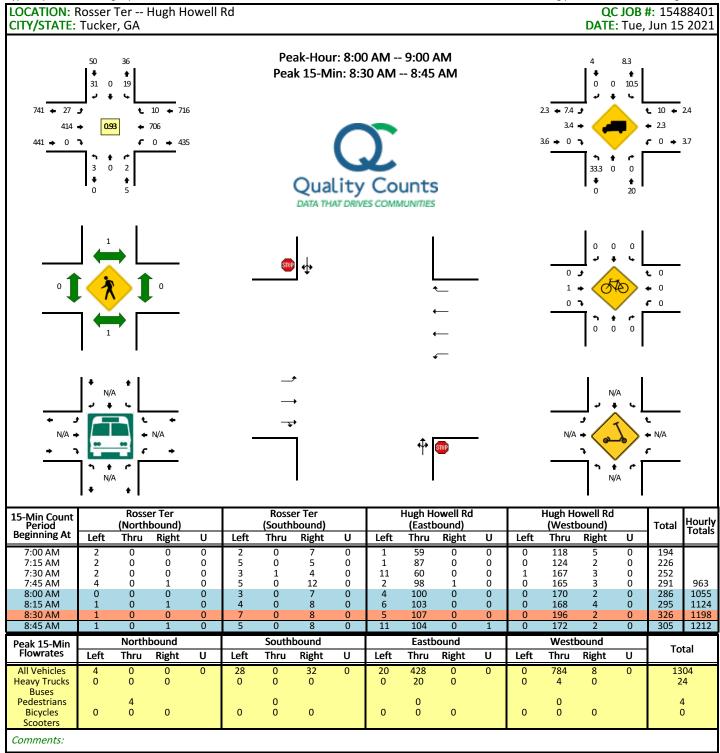
TRAFFIC IMPACT STUDY SCOPING/METHODOLOGY STATEMENT

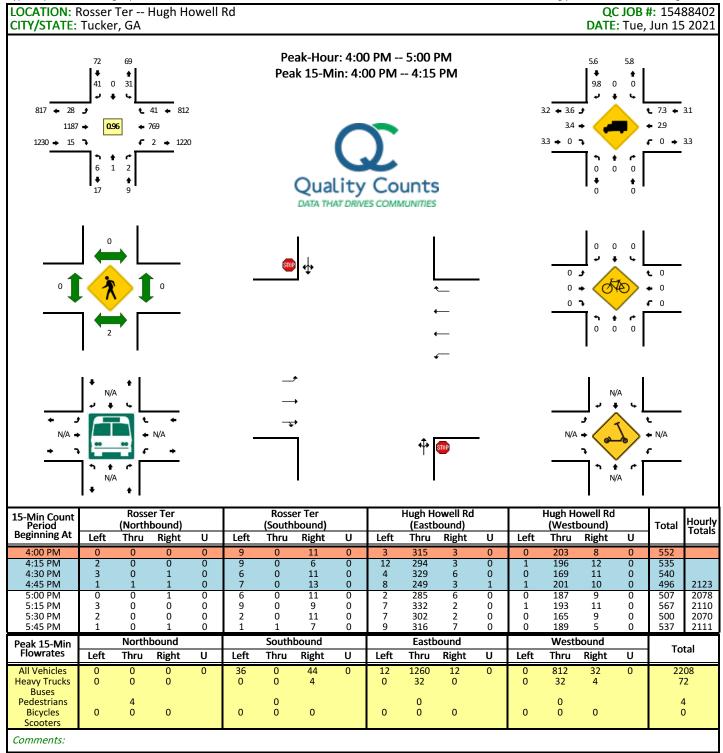
TABLE 1

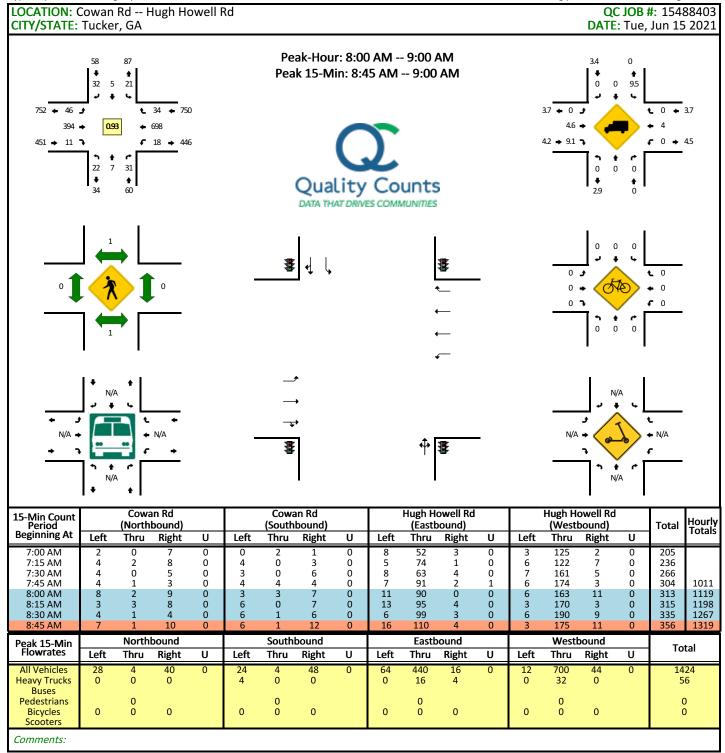
Land Use	Land Use	and Use Size Daily Trip		Dorind	Peak Hour Trips			Pass by ⁽²⁾			Primary		
Land Ose	Code ⁽¹⁾	3126	Size Daily Trips Pe		ln	Out	Total	ln	Out	Total	In	Out	Total
Fact Food restaurant with Drive thus	934	4,989 SF	2,350	AM	102	99	201	50	49	99	52	50	102
Fast Food restaurant with Drive thru				PM	85	78	163	43	39	82	42	39	81
(1) Based on the Institute of Transportation Engineers Trip Generation, 10th Edition													
1) Pass-By rates of 49% for the AM Peak Hour and 50% for the PM Peak Hour were extracted from the ITE Trip Generation Handbook, 3rd Edition													

TABLE 2

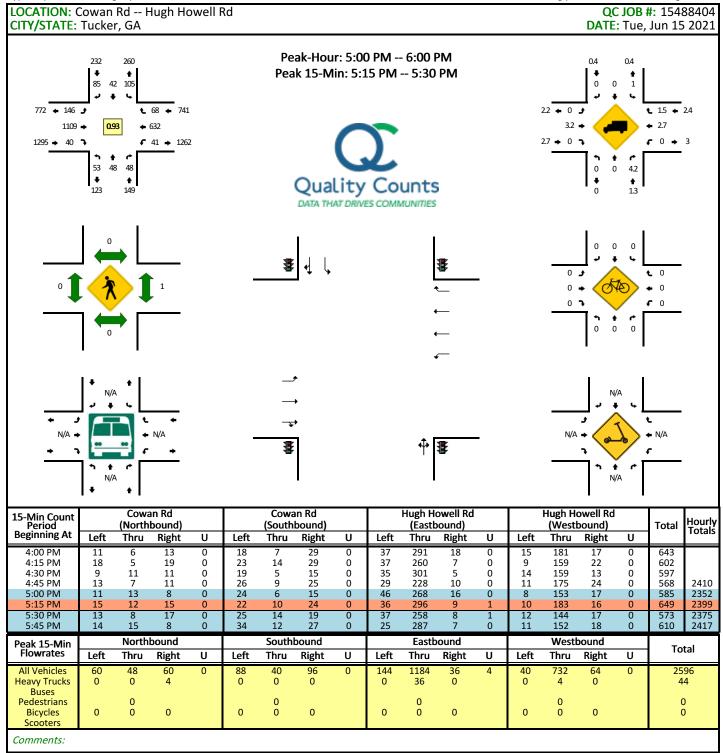
Roadway	From	to	2015	2016	2017	2018	2019	2016	2017	2018	2019	Avg Growth rate	Applied Growth rate
Hugh Howell Rd	Lawrenceville Hwy	Mountain Industrial Blvd	21,700	22,400	25,600	25,600	24,400	3.2%	14.3%	0.0%	-4.7%	3.2%	3.2%
Rosser Terrace	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Tucker Industrial Rd	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Cowan Rd	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%

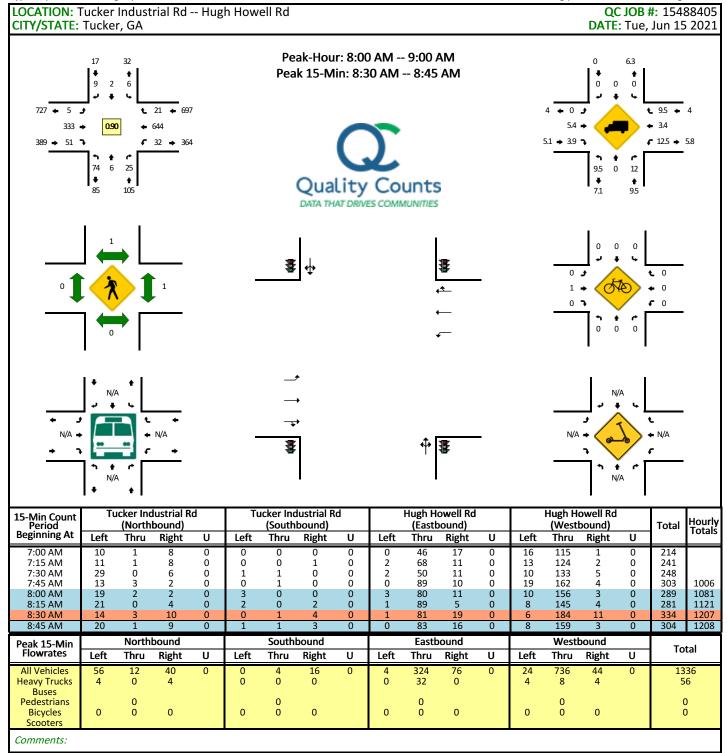

 $Source: Approximate\ Growth\ average\ from\ 2015-2019\ AADT's\ GDOT\ Traffic\ Count\ Database\ System\ (TCDS).$ https://gdottrafficdata.drakewell.com/publicmultinodemap.asp

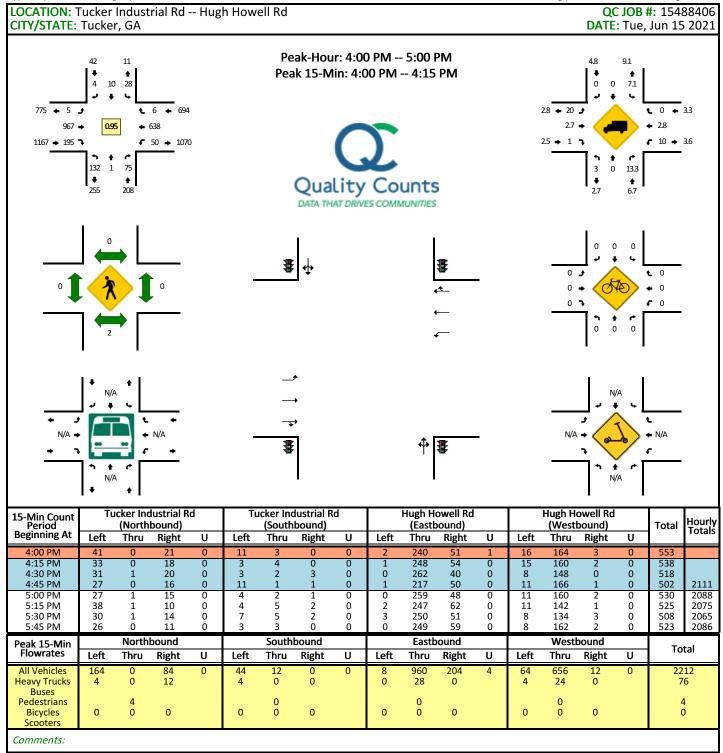

A 0.5% minimum growth rate for the roads was assumed based on the City of Tucker population growth rate.



APPENDIX C

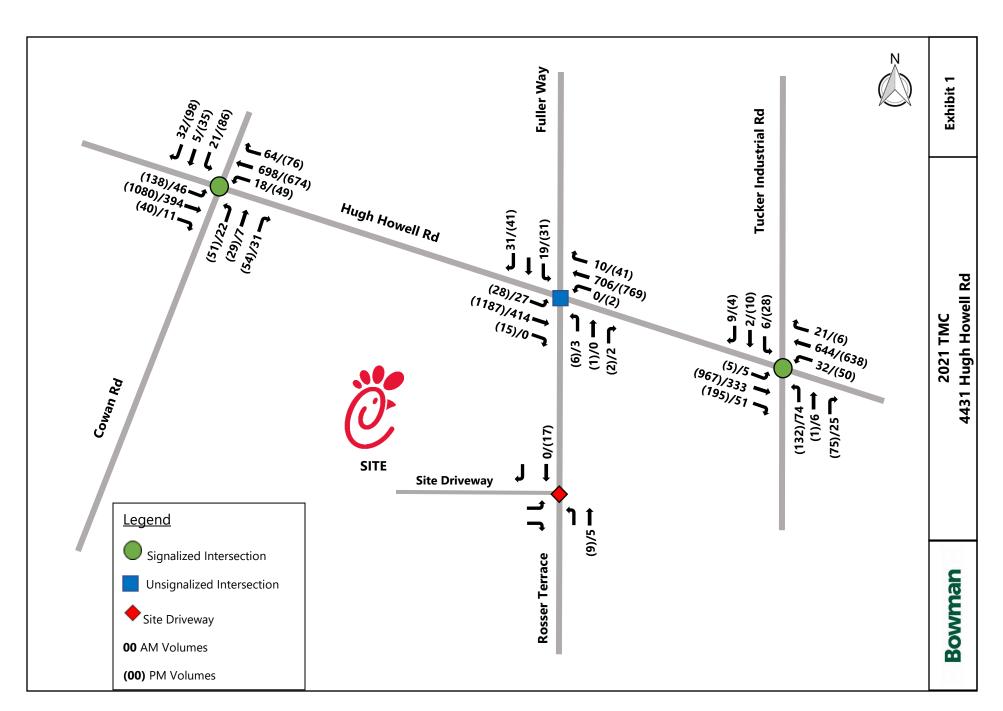


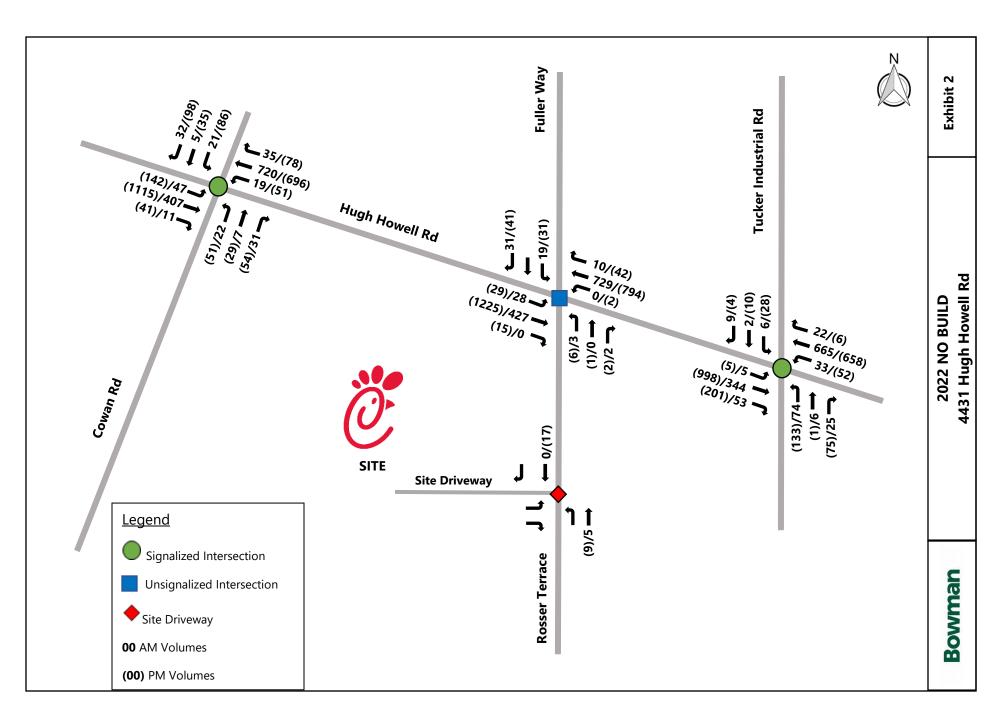


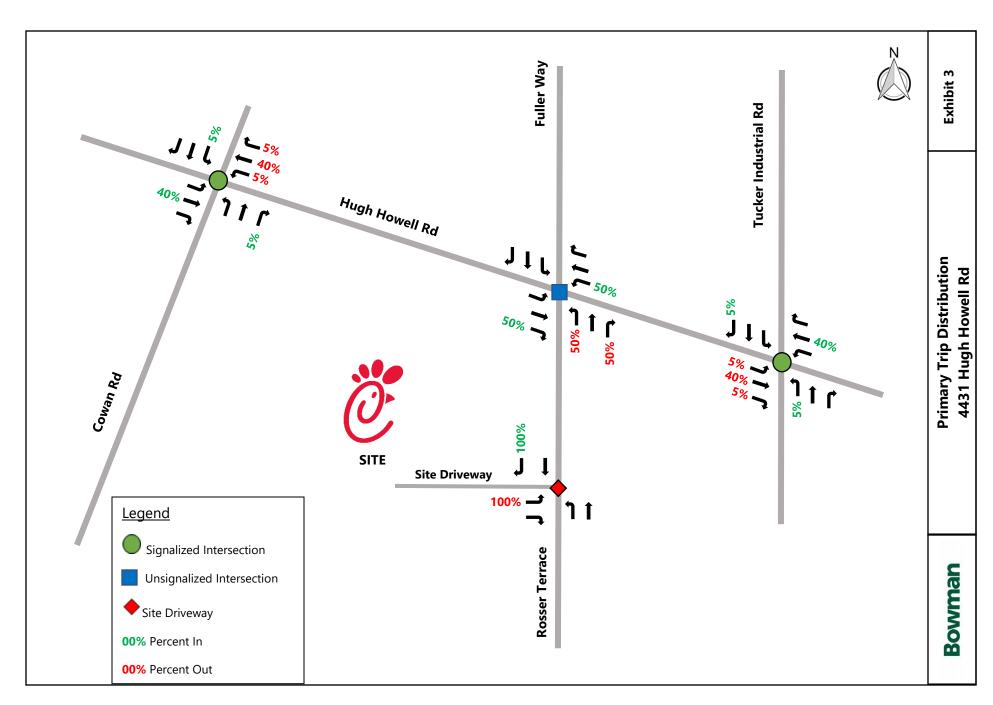


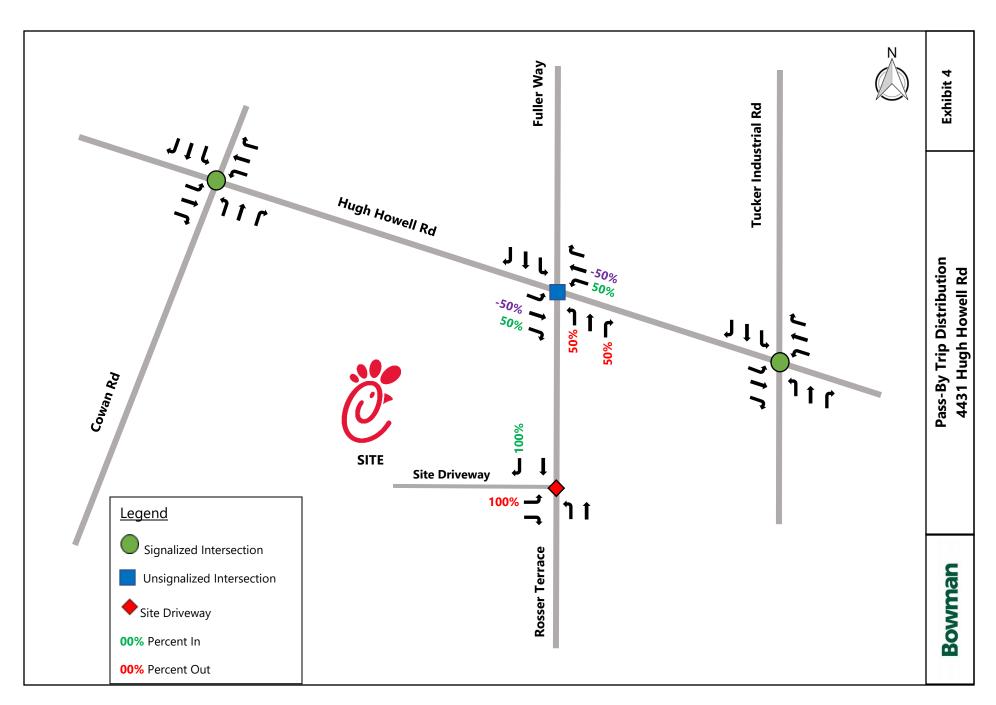
Report generated on 6/21/2021 10:17 AM

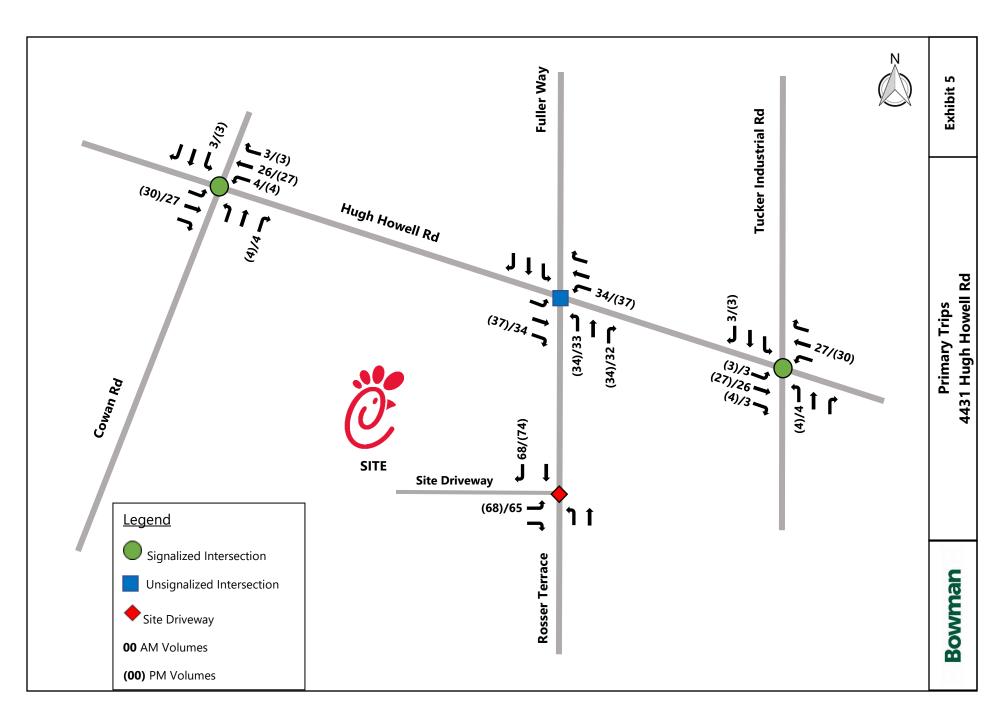
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

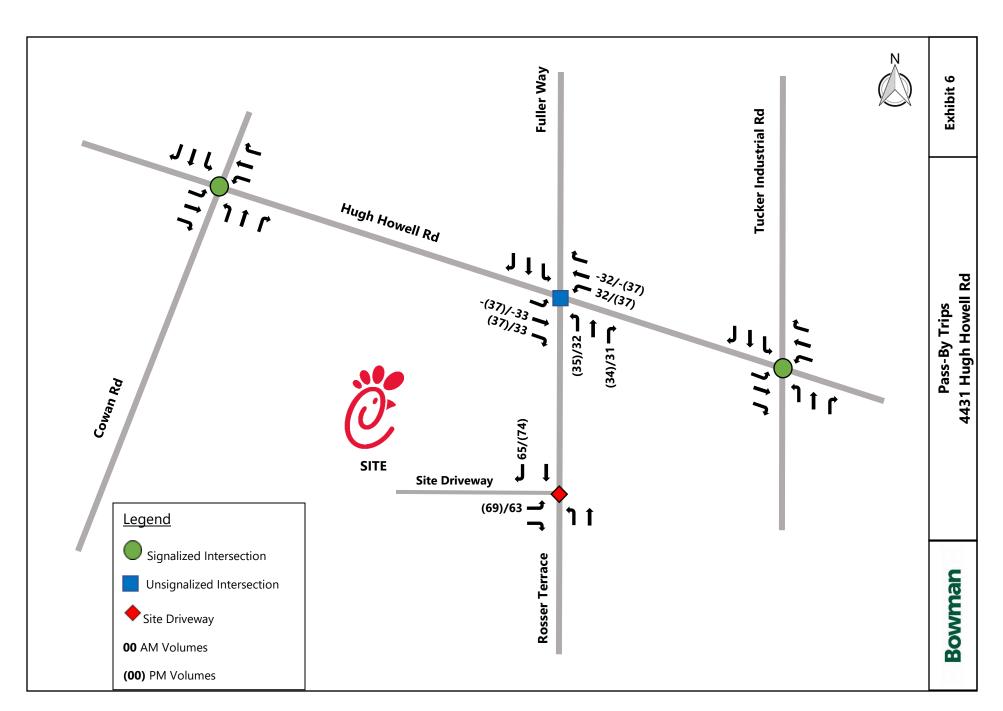


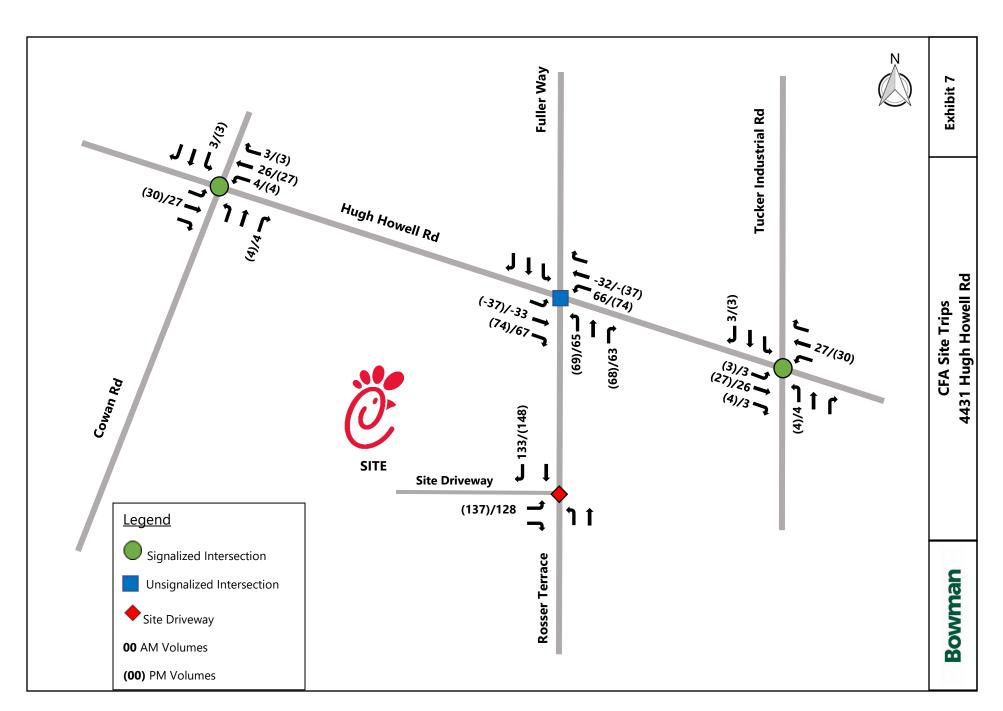







APPENDIX D





APPENDIX E

Memorandum

To: Chick-fil-A, Inc.

From: Andrew J. Petersen, P.E. - Director

Daniela Jurado – Analyst Rodrigo Meirelles -Analyst

Date: 06/18/2021

Re: Chick-Fil-A – Trip Generation Memorandum

Bowman Consulting has been retained by Chick-fil-A, Inc. to perform a Trip Generation at three fully operational Chick-Fil-A (CFA) Restaurants to determine the expected morning and evening peak hour trip generation rates for this facilities.

The purposes of the trip generation and stacking assessment are as follows:

- Determine the appropriate independent variable to assess the applicable CFA trip generation rates.
- Determine the expected trip generation rates for the CFA based on data collected from three existing CFA Sites.
- Determine if the Institute of Transportation Engineers (ITE) trip generation rates are consistent with calculated expected number of vehicular trips on the proposed CFA.
- Select the appropriate trip generation rates for the proposed CFA.

Selected Sites

For the preparation of this assessment, three Chick-Fil-A sites have been evaluated. The following criteria has been considered for the site selection:

- Type of Facility (Chick-Fil-A Restaurant)
- Operation (Drive-thru and Indoor sitting)
- Location of the facilities

The following sites were selected for the data collection.

Location 1	 Chick-Fil A Piedmont Address: 2580 Piedmont Rd NE, Atlanta, GA 30324 Surveyed Site Intensity: 5,200 SF AADT of Adjacent Street: 44,100
Location 2	 Chick-Fil A Druid Hills Address: 2340 N Druid Hills Rd NE, Atlanta, GA 30329 Surveyed Site Intensity: 4,550 SF AADT of Adjacent Street: 56,300

Location 3

Chick-Fil A Northside Dr

• Address: 1100 Northside Dr NW, Atlanta, GA 30318

Surveyed Site Intensity: 4,450SF
AADT of Adjacent Street: 30,300

Study Methodology

The study was based on average weekday entering/exiting volumes at each one of the selected Chick-Fil-A locations provided by the Atlanta Department of Transportation. The information corresponds to the average weekday data from two months in 2019 and February 2021 while school was in session.

The procedures and evaluation for this assessment are in accordance with the Institute of Traffic Engineers (ITE) Trip Generation Manual Handbook, 3rd Edition. The ITE is the leading resource for such data and provides traffic and parking related data for numerous land use and building types. Additionally, ITE provides trip and parking generation procedures to determine site specific trip and parking generation rates.

Data Collection

For the purposes of this study the following data was collected:

- Site specific data for existing Chick Fil A sites: Square Footage and location.
- Published GDOT AADT counts.
- ITE Trip Generation information and variables.
- Average trips generated by the surveyed Chick Fil A sites provided by the Atlanta Department of Transportation, see **Attachment A**.

Trip Generation Data

Table 1 displays the trip generation data collected on the three existing sites.

Table 1. Collected Trip Generation Data

	a Trip Ocheration Data						
Facility	Location	Square Footage	Adjacent Street ADTs	Time	In	Out	Total
(:FA	2580 Piedmont Rd NE,	5,200	44,100	AM	221	221	442
	Atlanta, GA 30324	5,200	44,100	PM	202	202	404
	0040 N D	4,550		AM	184	248	432
CFA	2340 N Druid Hills Rd NE Atlanta, GA 30329		56,300	Noon	306	412	718
	Additional SA 30323			PM	192	308	500
	4400 Neather to De NIM			AM	262	262	524
CFA	1100 Northside Dr NW Atlanta, GA 30318	4,450	30,300	Noon	263	263	526
	Aliania, GA 30316			PM	164	164	328

To assess the trip generation rates for the Chick-Fil-A two independent variables were evaluated: Gross Floor Area (GFA), AADT Adjacent Street.

To select the independent variables, the best fitted curve models were evaluated based on the conceptual validity of signs of the equations and goodness of fit. The results of these evaluation are presented in **Table 2**.

Table 2. Trip Generation Model evaluation

Model	Independent Variable	Equation	R²	Signs Conceptually Valid	Acceptable Goodness of FIT
AM Models	1,000 SF GFA	y = -64.523x + 771.41		No	No
AM Models	AADT of Adajacent Street	y = -0.0036x + 622.44	0.8563	No	Yes
PM Models	1,000 SF GFA	y = 11.859x + 354.53	0.0031	Yes	No
PIM Models	AADT of Adajacent Street	y = 0.0066x + 123.51	0.9895	Yes	Yes

Models containing the GFA variable were found to be not conceptually valid, with equations that reflect an inverse relationship between the GFA and the number of trips generated by the site and unacceptable goodness of fit.

Models using AADT of Adjacent Street as independent variable show acceptable goodness of fit. However, the AM model Based on AADT of adjacent street shows signs non conceptually valid, therefore, the weighted average was evaluated for this time period.

Based on the results presented in **Table 2** the Adjacent Street Traffic was selected as independent variable for both the morning and evening peak hours.

Following the procedures presented on the ITE *trip generation Handbook*, Chapter 9 and Appendix J, the use of the weighted average rate for the Morning peak was validated by comparing the weighted standard deviation with the weighted Average trip rate. **Table 3** presents the validation for the use of weighted average for the morning peak hour trip rate.

Table 3. Validation of AM Weighted average trip generation

Location	AADT of adjacent Steet	Peak Hour AM	Trip rate	Value	Value Squared	weight	Value Squared *weight
2580 Piedmont Rd	44,100	442	0.01002	0.00	0.0000005	0.34	0.00000015
2340 N Druid Hills Rd	56,300	432	0.00767	0.00	0.0000091	0.43	0.00000394
1100 Northside Dr	30,300	524	0.01729	0.01	0.0000435	0.23	0.00001009
Total	130,700.00	1,398.00	0.01070	-	Varia	ance	0.00001418
					Weighted San	nple Variance	0.00001773
					Weighted	d Std Dev	0.00
					Percentage	of W StdDev	39%
					Acceptable (less th	an 55% Trip Rate)	Yes

As presented in **Table 3** the standard deviation of the data falls in the allowable 55% threshold according to the procedures presented on the ITE trip generation Handbook, Chapter 9 and Appendix J, therefore, the use of weighted average trip generation rate is acceptable.

The selected trip generation equations for CFA facilities are presented in **Table 4**.

Table 4. Trip Generation equations for CFA facilities

Model	Independent Variable	Equation
AM	AADT of Adajacent Street	Total AM CFA trips = 0.0107 x AADT of Adjacent Street
PM	AADT of Adajacent Street	Total PM CFA trips = 0.0066 x AADT of Adjacent Street + 123.51

The evening peak hour model is the resulting fitted curve with AADT of adjacent street as independent variable. The trip generation rate for the morning peak hour is 0.0107 trips/AADT of Adjacent Street Traffic.

Conclusions and Recommendations

 Both, the morning and evening models containing the GFA variable were found to have unacceptable goodness of fit, the morning models is not conceptually valid, with an

equation that reflects an inverse relationship between the GFA, and the number of trips generated by the site.

- Models using AADT of Adjacent Street as independent variable show acceptable goodness of fit.
- The evening peak hour model is fitted curve with AADT of adjacent street as independent variable.
- The AM model Based on AADT of adjacent street shows signs non conceptually valid therefore, the weighted average was evaluated for this time period.
- The evaluation of the data for the morning peak hour shows that the standard deviation of the data falls in the allowable 55% threshold according to the procedures presented on the ITE trip generation Handbook, Chapter 9 and Appendix J, therefore, the use of weighted average trip generation rate is acceptable.
- The trip generation rate for the morning peak hour is 0.0107 trips/AADT of Adjacent Street Traffic.

ATTACHMENT A

From: Rome, Christopher <crome@AtlantaGa.Gov>

Sent: Wednesday, June 9, 2021 10:32 AM

Daniela Jurado; Rodriguez, Juan C.; Moore, Clyde To:

Cc: Rodrigo Meirelles; Andrew Petersen; Bridgette Ganter; Smoot-Madison,

Betty; Brown, Barrington G.

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge

Rd & Sheridan Rd

1100 Northside Dr

- AM Peak 262 trips in, assume 262 trips out 524 total trips
- Noon Peak 263 trips in, assume 263 trips out 526 total trips
- PM Peak 164 trips in, assume 164 trips out 328 total trips

Have you contacted GDOT's RTOP program or collected TMC's already at the I-85 ramps? That data will be more accurate than StreetLight Insight TMCs which are still in beta.

Chris Rome, PE, PTOE

Senior Multimodal Transportation Engineer City of Atlanta Department of Transportation 470-653-3016

crome@atlantaga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Wednesday, June 9, 2021 8:39 AM

To: Rome, Christopher < crome@AtlantaGa.Gov">crome@AtlantaGa.Gov>; Rodriguez, Juan C. < JCRodriguez@AtlantaGa.Gov>;

Moore, Clyde <CMoore@AtlantaGa.Gov>

Cc: Rodrigo Meirelles <rmeirelles@bowman.com>; Andrew Petersen <apetersen@bowman.com>; Bridgette Ganter < bganter@bowman.com >; Smoot-Madison, Betty < bsmoot-madison@AtlantaGa.Gov >;

Brown, Barrington G. < BGBrown@AtlantaGa.Gov >

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

Good Morning Chris,

Would it be possible to also pull out the Turning movements for Cheshire Bridge at I-85 ramps for the am noon and pm?

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Rome, Christopher < crome@AtlantaGa.Gov>

Sent: Tuesday, June 8, 2021 7:09 PM

To: Daniela Jurado <<u>djurado@bowman.com</u>>; Rodriguez, Juan C. <<u>JCRodriguez@AtlantaGa.Gov</u>>;

Moore, Clyde < CMoore@AtlantaGa.Gov>

Cc: Rodrigo Meirelles rmeirelles@bowman.com; Andrew Petersen apetersen@bowman.com;

Bridgette Ganter < bganter@bowman.com>; Smoot-Madison, Betty bsmoot-madison@AtlantaGa.Gov>;

Brown, Barrington G. < < BGBrown@AtlantaGa.Gov >

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

Tucker is outside of our data licensing geographic limits.

I'll pull the data from the Northside Dr site tomorrow.

Chris Rome, PE, PTOE

Senior Multimodal Transportation Engineer City of Atlanta Department of Transportation 470-653-3016

crome@atlantaga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Tuesday, June 8, 2021 7:00 PM

To: Rome, Christopher <<u>crome@AtlantaGa.Gov</u>>; Rodriguez, Juan C. <<u>JCRodriguez@AtlantaGa.Gov</u>>;

Moore, Clyde < < CMoore@AtlantaGa.Gov >

Cc: Rodrigo Meirelles < rmeirelles@bowman.com>; Andrew Petersen < apetersen@bowman.com>;

Bridgette Ganter < bganter@bowman.com >; Smoot-Madison, Betty < bsmoot-madison@AtlantaGa.Gov >;

Brown, Barrington G. < < BGBrown@AtlantaGa.Gov >

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

Thank you for the information. We would like to have the information for the following sites:

Location	AADT
1100 Northside Dr NW	30,300
4340 Hugh Howell Rd, Tucker, GA 30084	25,300

The reason is, we also want to evaluate the trip generation based on the AADT of adjacent street.

Thank you in advance.

Sincerely,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934

O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Rome, Christopher <crome@AtlantaGa.Gov>

Sent: Tuesday, June 8, 2021 5:21 PM

To: Daniela Jurado <<u>djurado@bowman.com</u>>; Rodriguez, Juan C. <<u>JCRodriguez@AtlantaGa.Gov</u>>;

Moore, Clyde < CMoore@AtlantaGa.Gov >

Cc: Rodrigo Meirelles < rmeirelles@bowman.com; Andrew Petersen < apetersen@bowman.com; Bridgette Ganter < bsmoot-madison@AtlantaGa.Gov; Brown, Barrington G. sgarter@bowman.com; Smoot-Madison, Betty < bsmoot-madison@AtlantaGa.Gov; Brown, Barrington G. sgarter@bowman.com); Smoot-Madison, Betty < bsmoot-madison@AtlantaGa.Gov); Brown, Barrington G. sgarter@bowman.com); Smoot-Madison, Betty < bsmoot-madison@AtlantaGa.Gov); Brown, Barrington G. sgarter@bowman.com); Brown G. sgar

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

I think it depends on the site characteristics if the Miami site is similar.

I used our StreetLight Data Insight platform access to look at the number of trips entering two Chick-fil-A locations in Atlanta. This is average weekday (M-Th) information from 2 months in 2019 and February 2021 when school was in session. The 1 standard deviation from the ITE land use code trip generation seems too low for an accurate assessment of site impact. If you have a specific site location in Atlanta that you think will be more representative of the conditions for the proposed site at Cheshire Bridge and Sheridan Rd, let me know and I can pull data for those locations.

2580 Piedmont Rd

- AM Peak 221 trips in, assume 221 trips out– 442 total trips
- Noon Peak 332 trips in, assume 332 trips out 664 total trips
- PM Peak 202 trips in, assume 202 trips out 404 total trips

2340 N Druid Hills Rd

- AM Peak 184 trips in, 248 trips out 432 total trips
- Noon Peak 306 trips in, 412 trips out 718 total trips
- PM Peak 192 trips in, 308 trips out 500 total trips

Chris Rome, PE, PTOE

Senior Multimodal Transportation Engineer City of Atlanta Department of Transportation 470-653-3016 crome@atlantaga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Tuesday, June 8, 2021 2:36 PM

To: Rome, Christopher <<u>crome@AtlantaGa.Gov</u>>; Rodriguez, Juan C. <<u>JCRodriguez@AtlantaGa.Gov</u>>;

Moore, Clyde < CMoore@AtlantaGa.Gov>

Cc: Rodrigo Meirelles < rmeirelles@bowman.com; Andrew Petersen < apetersen@bowman.com; Bridgette Ganter < bsmoot-madison@AtlantaGa.Gov; Brown, Barrington G. sgray-mailto:sgr

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

Good Afternoon Chris,

APPENDIX F

	•	→	•	•	+	•	•	†	<i>></i>	\		1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	^	7		4		*	1	
Traffic Volume (vph)	47	407	11	19	720	35	22	7	31	21	5	32
Future Volume (vph)	47	407	11	19	720	35	22	7	31	21	5	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	10	10	10
Storage Length (ft)	125	12	0	115	12	0	0	12	0	0	10	0
Storage Lanes	123		0	113		1	0		0	1		0
Taper Length (ft)	55		U	65			25		U	25		J
Right Turn on Red	00		Yes	00		Yes	20		Yes	20		Yes
Link Speed (mph)		45	103		45	103		30	103		30	103
Link Distance (ft)		1049			415			1011			510	
Travel Time (s)		15.9			6.3			23.0			11.6	
Confl. Peds. (#/hr)	1	10.0	1	1	0.0	1		20.0			11.0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
	0.93	5%	9%	0.93	4%	0.93	0.93	0.93	0.93	10%	0.93	0.93
Heavy Vehicles (%)	U 70	5%	970	U 70	4 70	U 70	U 70	0 70	0 70	10 70	0 70	0 70
Shared Lane Traffic (%)		NIA			N I A	Dames	Dames	NΙΛ			NΙΛ	
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2	_	_	8		7	4	
Permitted Phases	6	•		2	•	2	8	•		4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase		40.0			40.0	40.0						
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	26.0	85.0		17.0	76.0	76.0	42.0	42.0		16.0	58.0	
Total Split (%)	16.3%	53.1%		10.6%	47.5%	47.5%	26.3%	26.3%		10.0%	36.3%	
Maximum Green (s)	19.8	78.9		11.7	69.9	69.9	35.5	35.5		9.9	51.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	126.2	121.9		123.7	118.1	118.1		9.6		19.0	18.6	
Actuated g/C Ratio	0.79	0.76		0.77	0.74	0.74		0.06		0.12	0.12	
v/c Ratio	0.09	0.17		0.03	0.30	0.03		0.55		0.17	0.19	
Control Delay	5.0	7.0		4.5	8.0	0.1		58.3		60.5	21.6	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	5.0	7.0		4.5	8.0	0.1		58.3		60.5	21.6	
LOS	Α	Α.		Α.	Α	A		E		E	C C	
Approach Delay	Λ.	6.8		,,	7.5	, ,		58.3			36.0	
Approach LOS		Α			7.5 A			50.5 E			D	
Apploacii LOS		А			А						ט	

Baseline

Synchro 10 Report Page 1

Intersection Summary		
Area Type: Other		
Cycle Length: 160		
Actuated Cycle Length: 160		
Offset: 148.9 (93%), Referenced to phase 2:WBTL and	6:EBTL, Start of Yellow	
Natural Cycle: 95		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.55		
Intersection Signal Delay: 10.8	Intersection LOS: B	
Intersection Capacity Utilization 53.3%	ICU Level of Service A	
Analysis Period (min) 15		
Splits and Phases: 1: Cowan Rd/The Centre Drivewa	y & Hugh Howell Rd	
✓ Ø2 (R)	₩ Ø4	
26 s 76 s	58 s	
	A	

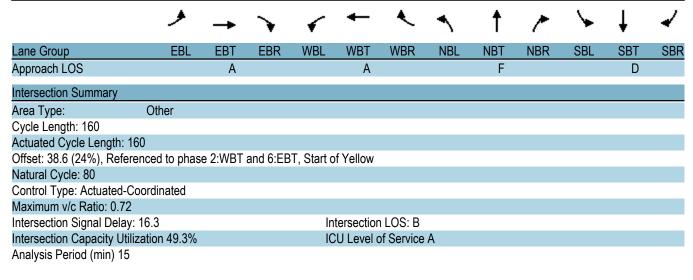
	۶	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ⊅		ሻ	^↑	7		4		7	₽	
Traffic Volume (veh/h)	47	407	11	19	720	35	22	7	31	21	5	32
Future Volume (veh/h)	47	407	11	19	720	35	22	7	31	21	5	32
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1900	1841	1900	1900	1900	1900	1752	1900	1900
Adj Flow Rate, veh/h	51	438	12	20	774	38	24	8	33	23	5	34
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	5	5	0	4	0	0	0	0	10	0	0
Cap, veh/h	615	2613	71	768	2557	1176	56	17	43	148	24	161
Arrive On Green	0.04	0.76	0.76	0.04	1.00	1.00	0.05	0.05	0.05	0.02	0.11	0.11
Sat Flow, veh/h	1810	3449	94	1810	3497	1609	471	309	804	1668	211	1432
Grp Volume(v), veh/h	51	220	230	20	774	38	65	0	0	23	0	39
Grp Sat Flow(s), veh/h/ln	1810	1735	1809	1810	1749	1609	1583	0	0	1668	0	1642
Q Serve(g_s), s	1.1	5.6	5.7	0.4	0.0	0.0	4.9	0.0	0.0	2.0	0.0	3.5
Cycle Q Clear(g_c), s	1.1	5.6	5.7	0.4	0.0	0.0	6.4	0.0	0.0	2.0	0.0	3.5
Prop In Lane	1.00	5.0	0.05	1.00	0.0	1.00	0.4	0.0	0.51	1.00	0.0	0.87
Lane Grp Cap(c), veh/h	615	1314	1370	768	2557	1176	116	0	0.51	148	0	184
V/C Ratio(X)	0.08	0.17	0.17	0.03	0.30	0.03	0.56	0.00	0.00	0.16	0.00	0.21
Avail Cap(c_a), veh/h	768	1314	1370	867	2557	1176	376	0.00	0.00	218	0.00	529
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00		0.00	0.00	1.00	0.00	
Upstream Filter(I)	4.3		5.4		0.0		1.00					1.00 64.6
Uniform Delay (d), s/veh		5.4		5.0		0.0	74.6	0.0	0.0	67.7	0.0	
Incr Delay (d2), s/veh	0.1	0.3	0.3	0.0	0.3	0.1	4.1	0.0	0.0	0.5	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	1.9	2.0	0.2	0.1	0.0	2.8	0.0	0.0	0.9	0.0	1.5
Unsig. Movement Delay, s/veh				5.0	0.0	0.4	70.7	0.0	0.0	00.0	0.0	05.0
LnGrp Delay(d),s/veh	4.4	5.7	5.7	5.0	0.3	0.1	78.7	0.0	0.0	68.2	0.0	65.2
LnGrp LOS	A	Α	Α	Α	Α	Α	E	Α	Α	E	A	E
Approach Vol, veh/h		501			832			65			62	
Approach Delay, s/veh		5.5			0.4			78.7			66.3	
Approach LOS		Α			Α			E			Е	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.5	123.1		24.4	8.2	127.3	9.3	15.1				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 20	69.9		51.5	* 12	78.9	9.9	35.5				
Max Q Clear Time (g_c+l1), s	3.1	2.0		5.5	2.4	7.7	4.0	8.4				
Green Ext Time (p_c), s	0.1	13.1		0.2	0.0	5.6	0.0	0.3				
Intersection Summary												
HCM 6th Ctrl Delay			8.4									
HCM 6th LOS			Α									
Notes												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

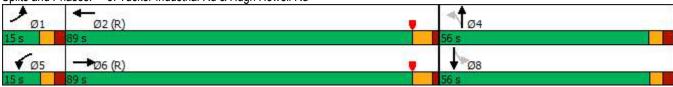
•	→	•	•	←	•	4	†	/	/	ļ	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ሻ	^ \$		ሻ	^	7		4			î,	
28	427	0	0	729	10	3	0	2	19	0	31
28	427	0	0	729	10	3	0	2	19	0	31
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
100		0	100		100	0		0	0		0
1		0	1		1	0		0	0		0
25			25			25			25		
	45			45			30			30	
	415			1148			1035			349	
	6.3			17.4			23.5			7.9	
1		1	1		1						
		1									
0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
7%	3%	0%	0%	2%	10%	33%	0%	0%	10%	0%	0%
	Free			Free			Stop			Stop	
Other											
ion 33.3%			IC	U Level o	of Service	Α					
	28 28 1900 100 1 25 1 0.93 7%	28 427 28 427 1900 1900 100 1 25 45 415 6.3 1 0.93 0.93 7% 3% Free	28 427 0 28 427 0 1900 1900 1900 100 0 1 0 25 45 415 6.3 1 1 0.93 0.93 0.93 7% 3% 0% Free	28 427 0 0 28 427 0 0 1900 1900 1900 1900 100 0 100 1 0 1 25 25 45 415 6.3 1 1 1 0.93 0.93 0.93 0.93 7% 3% 0% 0% Free	28 427 0 0 729 28 427 0 0 729 1900 1900 1900 1900 1900 100 0 100 1 0 1 25 25 45 45 415 1148 6.3 17.4 1 1 1 0.93 0.93 0.93 0.93 0.93 7% 3% 0% 0% 2% Free Free	28 427 0 0 729 10 28 427 0 0 729 10 1900 1900 1900 1900 1900 1900 100 0 100 100 1 0 1 1 25 25 45 45 415 1148 6.3 17.4 1 1 1 1 1 0.93 0.93 0.93 0.93 0.93 7% 3% 0% 0% 2% 10% Free Free	28	28	28	28	1 0 2 19 0 0 2 19 0 0 2 19 0 0 1900

Analysis Period (min) 15

Synchro 10 Report Page 4 Baseline


Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	ħβ			^	7		4			f)	
Traffic Vol, veh/h	28	427	0	0	729	10	3	0	2	19	0	31
Future Vol, veh/h	28	427	0	0	729	10	3	0	2	19	0	31
Conflicting Peds, #/hr	1	0	1	1	0	1	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	100	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	7	3	0	0	2	10	33	0	0	10	0	0
Mvmt Flow	30	459	0	0	784	11	3	0	2	20	0	33
Major/Minor	Major1		N	Major2		١	/linor1		N	Minor2		
Conflicting Flow All	796	0	0	460	0	0	912	1316	231	1075	1305	393
Stage 1	-	-	-	-	-	-	520	520	-	785	785	-
Stage 2	-	-	-	-	-	-	392	796	-	290	520	-
Critical Hdwy	4.24	-	-	4.1	-	-	8.16	6.5	6.9	7.7	6.5	6.9
Critical Hdwy Stg 1	-	-	-	-	-	-	5.5	5.5	-	5.5	5.5	-
Critical Hdwy Stg 2	_											
		-	-	-	-	-	5.5	5.5	-	5.5	5.5	-
Follow-up Hdwy	2.27	-	-	2.2	-	- -	3.83	4	3.3	3.6	4	3.3
, ,	2.27 790	- -	- - -	2.2 1112			3.83 186	4 159		3.6 164	4 162	
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1			- - -		-	-	3.83 186 553	4 159 535	3.3	3.6 164 435	4 162 407	3.3
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2	790		- - - -		-	-	3.83 186	4 159	3.3 777	3.6 164	4 162	3.3 612
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, %	790 - -		-		-	- - -	3.83 186 553 632	4 159 535 402	3.3 777 -	3.6 164 435 740	4 162 407 535	3.3 612 -
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver	790	- -	- - - - -		- - -	- - -	3.83 186 553 632	4 159 535 402	3.3 777	3.6 164 435 740	4 162 407 535	3.3 612 -
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	790 - -	- - -	- - -	1112	- - - -	- - - -	3.83 186 553 632 171 328	4 159 535 402 153 264	3.3 777 -	3.6 164 435 740 159 306	4 162 407 535 156 277	3.3 612 -
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver	790 - - - 789	- - - -	- - -	1112	- - - -	- - - -	3.83 186 553 632	4 159 535 402	3.3 777 - - 776	3.6 164 435 740	4 162 407 535	3.3 612 - - 611

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0.6	0	13.6	11.2	
HCM LOS			В	В	

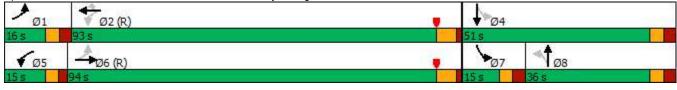

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	BLn1	
Capacity (veh/h)	426	789	-	-	1111	-	-	611	
HCM Lane V/C Ratio	0.013	0.038	-	-	-	-	-	0.055	
HCM Control Delay (s)	13.6	9.7	-	-	0	-	-	11.2	
HCM Lane LOS	В	Α	-	-	Α	-	-	В	
HCM 95th %tile Q(veh)	0	0.1	-	-	0	-	-	0.2	

Synchro 10 Report Page 5 Baseline

	۶	→	•	•	+	•	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		7	↑ ↑			4			4	
Traffic Volume (vph)	5	344	53	33	665	22	74	6	25	6	2	9
Future Volume (vph)	5	344	53	33	665	22	74	6	25	6	2	9
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	12	12	14	12
Storage Length (ft)	150		0	100		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	60			50			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		45			45	. 00		35			35	. 00
Link Distance (ft)		1148			648			819			1228	
Travel Time (s)		17.4			9.8			16.0			23.9	
Confl. Peds. (#/hr)	1				0.0	1		10.0	1	1	20.0	
Confl. Bikes (#/hr)	<u>'</u>		1			•			•	'		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0.30	5%	4%	12%	3%	10%	10%	0.30	12%	0.30	0.30	0.30
Shared Lane Traffic (%)	0 70	370	₹ /0	12/0	J /0	10 /0	10 /0	0 70	12/0	0 70	0 70	0 70
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2		1 Cilli	4		1 Cilli	8	
Permitted Phases	ı	U		3			4	7		8	U	
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase	ı	U		3				7		U	U	
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	89.0		15.0	89.0		56.0	56.0		56.0	56.0	
Total Split (%)	9.4%	55.6%		9.4%	55.6%		35.0%	35.0%		35.0%	35.0%	
Maximum Green (s)	8.9	82.6		9.1	82.6		49.9	49.9		50.1	50.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		2.0	0.0		2.5	0.0	
Total Lost Time (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Lead/Lag	Lead	Lag		Lead	Lag			0.1			5.5	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	15.0		0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)	NOTIC	7.0		NOTIC	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		18.0			18.0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	6.2	117.0		9.1	127.0		0	17.8		0	18.0	
Actuated g/C Ratio	0.04	0.73		0.06	0.79			0.11			0.11	
v/c Ratio	0.04	0.73		0.41	0.73			0.72			0.10	
Control Delay	67.6	9.1		85.0	5.5			85.2			38.4	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
•	67.6	9.1		85.0	5.5			85.2			38.4	
Total Delay	67.6 E			65.U F				65.2 F				
LOS Approach Dolov	E	A 9.9		Г	9.2						D 38.4	
Approach Delay		9.9			9.2			85.2			აზ.4	

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

Lane Configurations		۶	→	•	•	←	•	•	†	/	>	ļ	4
Traffic Volume (vehln)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/h) 5 344 53 33 665 22 74 6 25 6 2 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lane Configurations	ሻ	↑ 1≽		ሻ	∱ }			4			4	
Initial O (Ob), weh	Traffic Volume (veh/h)	5		53	33		22	74		25	6	2	9
Ped-Bike Adj(A_pbT)	Future Volume (veh/h)	5	344	53	33	665	22	74	6	25	6	2	9
Ped-Biks Adj(A_pbT)	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Parking Busi, Adj	Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00
Work Zone On Approach No No No No No No Adj Sat Flow, vehinlin 1900 1826 1826 1722 1856 1900 1976 1900 1900 1976 1900 1976 1900 1976 1900 1976 1900 1976 1900 1976 1900 1976 1900 1976 1900 1976 1900 1976 1900 1976 1900 1900 1900 1900 1900 1900 1900 1900 1900 0.90 <t< td=""><td></td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td></t<>		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, vehrihin 1900 1826 1826 1722 1856 1856 1900 1976 1900 1900 1976 1900 Adj Flow Rate, vehrih 6 382 59 37 739 24 82 7 28 7 2 10 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9			No			No			No			No	
Adj Flow Rate, vehr/h Peak Hour Factor O.90 O.90 O.90 O.90 O.90 O.90 O.90 O.90		1900	1826	1826	1722	1856	1856	1900	1976	1900	1900	1976	1900
Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9		6		59	37		24	82	7	28	7	2	10
Percent Heavy Veh, % 0 5 5 12 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									0.90		0.90	0.90	0.90
Cap, veh/h 13 2300 352 46 2735 89 139 10 35 76 30 86 Arrive On Green 0.01 1.00 1.00 0.03 0.78 0.78 0.09 0.09 0.09 0.09 0.09 0.09 0.09 Sat Flow, veh/h 1810 3006 460 1640 3485 113 1099 104 378 489 333 913 Grp Volume(v), veh/h 6 219 222 37 374 389 117 0 0 19 0 0 Grp Sat Flow(s), veh/h/ln 1810 1735 1731 1640 1763 1835 1581 0 0 1735 0 0 Grg Sat Flow(s), veh/h/ln 1810 1735 1731 1640 1763 1835 1581 0 0 1735 0 0 Q Serve(g.s), s 0.5 0.0 0.0 3.6 9.3 9.3 10.0 0.0 0.0 0.0 1.5 0.0 Q Serve(g.s), s 0.5 0.0 0.0 3.6 9.3 9.3 11.5 0.0 0.1 1.5 0.0 Prop In Lane 1.00 0.27 1.00 0.06 0.70 0.24 0.37 0.53 Lane Grp Cap(c), veh/h 13 1328 1325 46 1384 1441 183 0 0 189 0 0 Q VC Ratio(X) 0.45 0.16 0.17 0.80 0.27 0.27 0.64 0.00 0.0 0.10 0.00 Qvail Cap(c.a), veh/h 101 1328 1325 93 1384 1441 523 0 0 545 0 0 HCM Platoon Ratio 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00													0
Arrive On Green 0.01 1.00 1.00 0.03 0.78 0.78 0.09 0.09 0.09 0.09 0.09 0.09 0.05 Sat Flow, weh/h 1810 3006 460 1640 3485 113 1099 104 378 489 333 913 (Gry Volume(v), weh/h 6 219 222 37 374 389 1117 0 0 19 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0													83
Sat Flow, veh/h 1810 3006 460 1640 3485 113 1099 104 378 489 333 913 Grp Volume(v), veh/h 6 219 222 37 374 389 117 0 0 19 0 0 Grp Sat Flow(s), veh/h/ln 1810 1735 1731 1640 1763 1835 1581 0 0 1735 0 Q Serve(g. s), s 0.5 0.0 0.0 3.6 9.3 9.3 10.0 0.0													0.09
Grp Volume(v), veh/h 6 219 222 37 374 389 117 0 0 19 0 0 Grp Sat Flow(s), veh/h/ln 1810 1735 1731 1640 1763 1835 1581 0 0 1735 0 0 Q Serve(g. s), s 0.5 0.0 0.0 3.6 9.3 9.3 10.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g. c), s 0.5 0.0 0.0 3.6 9.3 9.3 11.5 0.0 0.0 1.5 0.0 0.0 Prop In Lane 1.00 0.27 1.00 0.06 0.70 0.24 0.37 0.55 Lane Grp Cap(c), veh/h 13 1328 1325 46 1384 1441 183 0 0 189 0 0 V/C Ratio(X) 0.45 0.16 0.17 0.80 0.27 0.27 0.64 0.00 0.00 0.10 0.00 V/C Ratio(X) 0.45 0.16 0.17 0.80 0.27 0.27 0.64 0.00 0.00 0.10 0.00 V/C Ratio(X) 0.45 0.16 0.17 0.80 0.27 0.27 0.64 0.00 0.00 0.10 0.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													913
Grp Sat Flow(s),veh/h/ln													0
Q Serve(g_s), s													0
Cycle Q Clear(g_c), s													
Prop In Lane	, ,												
Lane Grp Cap(c), veh/h 13 1328 1325 46 1384 1441 183 0 0 189 0 0 V/C Ratio(X) 0.45 0.16 0.17 0.80 0.27 0.27 0.64 0.00 0.00 0.10 0.00 0.00 Avail Cap(c_a), veh/h 101 1328 1325 93 1384 1441 523 0 0 545 0 0 CHCM Platoon Ratio 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00			0.0			9.0			0.0			0.0	
V/C Ratio(X) 0.45 0.16 0.17 0.80 0.27 0.27 0.64 0.00 0.00 0.10 0.00 0.00 Avail Cap(c_a), veh/h 101 1328 1325 93 1384 1441 523 0 0 545 0 0 HCM Platoon Ratio 2.00 2.00 1.00 </td <td></td> <td></td> <td>1220</td> <td></td> <td></td> <td>1201</td> <td></td> <td></td> <td>٥</td> <td></td> <td></td> <td>0</td> <td>0.55</td>			1220			1201			٥			0	0.55
Avail Cap(c_a), veh/h													
HCM Platoon Ratio 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00													
Upstream Filter(I)													
Uniform Delay (d), s/veh 78.5 0.0 0.0 77.3 4.7 4.7 71.1 0.0 0.0 66.7 0.0 0.0 lncr Delay (d2), s/veh 22.3 0.3 0.3 25.9 0.5 0.5 3.7 0.0 0.0 0.0 0.2 0.0 0.0 lnitial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Incr Delay (d2), s/veh													
Initial Q Delay(d3),s/veh													
%ile BackOIQ(50%),veh/ln 0.3 0.1 0.1 1.8 3.0 3.1 4.9 0.0 0.0 0.7 0.0 0.0 Unsig. Movement Delay, s/veh 100.8 0.3 0.3 103.2 5.2 5.2 74.8 0.0 0.0 67.0 0.0 0.0 LnGrp LOS F A A F A A E A A E A A E A A E A A E A													
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 100.8 0.3 0.3 103.2 5.2 5.2 74.8 0.0 0.0 67.0 0.0 0.0 LnGrp LOS F A A F A A E A A E A A E A A E A A E A A E A A E A A E A A E A A E A A E A A E A E A A E A E A E A E A E A E													
LnGrp Delay(d),s/veh 100.8 0.3 0.3 103.2 5.2 5.2 74.8 0.0 0.0 67.0 0.0 0.0 LnGrp LOS F A A F A A E A A E A A E A A E A A E A A A B B A A A B B A A B B A A B B A A B B A A B B A A B B A A B B A B B A B B A A B B A A B B A B B B A B B A B B A B B A B B B A B B B A			0.1	0.1	1.8	3.0	3.1	4.9	0.0	0.0	0.7	0.0	0.0
LnGrp LOS F A A F A A E A A E A A E A A E A B B A			0.0	0.0	400.0	- 0	5 0	74.0	0.0	0.0	07.0	0.0	0.0
Approach Vol, veh/h Approach Delay, s/veh Approach Delay, s/veh Approach LOS A A A B B B B B B B B B B B B B B B B	. , ,												
Approach Delay, s/veh		<u> </u>		A	<u> </u>		A	<u> </u>		A	<u> </u>		A
Approach LOS A A B E E Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.3 132.0 20.7 10.4 128.9 20.7 Change Period (Y+Rc), s 6.1 *6.4 6.1 *5.9 *6.4 *6.1 Max Green Setting (Gmax), s 8.9 *83 49.9 *9.1 *83 *50 Max Q Clear Time (g_c+I1), s 2.5 11.3 13.5 5.6 2.0 3.5 Green Ext Time (p_c), s 0.0 11.3 0.6 0.0 5.6 0.1 Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B													
Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.3 132.0 20.7 10.4 128.9 20.7 Change Period (Y+Rc), s 6.1 *6.4 6.1 *5.9 *6.4 *6.1 Max Green Setting (Gmax), s 8.9 *83 49.9 *9.1 *83 *50 Max Q Clear Time (g_c+I1), s 2.5 11.3 13.5 5.6 2.0 3.5 Green Ext Time (p_c), s 0.0 11.3 0.6 0.0 5.6 0.1 Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B													
Phs Duration (G+Y+Rc), s 7.3 132.0 20.7 10.4 128.9 20.7 Change Period (Y+Rc), s 6.1 * 6.4 6.1 * 5.9 * 6.4 * 6.1 Max Green Setting (Gmax), s 8.9 * 83 49.9 * 9.1 * 83 * 50 Max Q Clear Time (g_c+I1), s 2.5 11.3 13.5 5.6 2.0 3.5 Green Ext Time (p_c), s 0.0 11.3 0.6 0.0 5.6 0.1 Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B	Approach LOS		Α			Α			E			E	
Change Period (Y+Rc), s 6.1 * 6.4 6.1 * 5.9 * 6.4 * 6.1 Max Green Setting (Gmax), s 8.9 * 83 49.9 * 9.1 * 83 * 50 Max Q Clear Time (g_c+I1), s 2.5 11.3 13.5 5.6 2.0 3.5 Green Ext Time (p_c), s 0.0 11.3 0.6 0.0 5.6 0.1 Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B	Timer - Assigned Phs	1	2		4	5	6		8				
Change Period (Y+Rc), s 6.1 * 6.4 6.1 * 5.9 * 6.4 * 6.1 Max Green Setting (Gmax), s 8.9 * 83 49.9 * 9.1 * 83 * 50 Max Q Clear Time (g_c+l1), s 2.5 11.3 13.5 5.6 2.0 3.5 Green Ext Time (p_c), s 0.0 11.3 0.6 0.0 5.6 0.1 Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B	Phs Duration (G+Y+Rc), s	7.3	132.0		20.7	10.4	128.9		20.7				
Max Green Setting (Gmax), s 8.9 *83 49.9 *9.1 *83 *50 Max Q Clear Time (g_c+l1), s 2.5 11.3 13.5 5.6 2.0 3.5 Green Ext Time (p_c), s 0.0 11.3 0.6 0.0 5.6 0.1 Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B		6.1			6.1	* 5.9	* 6.4		* 6.1				
Max Q Clear Time (g_c+l1), s 2.5 11.3 13.5 5.6 2.0 3.5 Green Ext Time (p_c), s 0.0 11.3 0.6 0.0 5.6 0.1 Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B													
Green Ext Time (p_c), s 0.0 11.3 0.6 0.0 5.6 0.1 Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B													
Intersection Summary HCM 6th Ctrl Delay 13.4 HCM 6th LOS B													
HCM 6th Ctrl Delay 13.4 HCM 6th LOS B	· /												
HCM 6th LOS B				12.4									
	•												
				D									


^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	•	•	+	•	•	†	<i>></i>	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	↑ ↑		*	^	7		4		ች	f.	
Traffic Volume (vph)	142	1115	41	51	696	78	51	29	54	86	35	98
Future Volume (vph)	142	1115	41	51	696	78	51	29	54	86	35	98
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	10	10	10
Storage Length (ft)	125		0	115		0	0		0	0		0
Storage Lanes	1		0	1		1	0		0	1		0
Taper Length (ft)	55			65			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		1049			415			1011			510	
Travel Time (s)		15.9			6.3			23.0			11.6	
Confl. Peds. (#/hr)									1	1		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	0%	3%	0%	0%	3%	2%	0%	0%	4%	1%	0%	0%
Shared Lane Traffic (%)												
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	16.0	94.0		15.0	93.0	93.0	36.0	36.0		15.0	51.0	
Total Split (%)	10.0%	58.8%		9.4%	58.1%	58.1%	22.5%	22.5%		9.4%	31.9%	
Maximum Green (s)	9.8	87.9		9.7	86.9	86.9	29.5	29.5		8.9	44.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	111.1	102.9		104.9	97.1	97.1		19.4		34.8	34.4	
Actuated g/C Ratio	0.69	0.64		0.66	0.61	0.61		0.12		0.22	0.22	
v/c Ratio	0.32	0.55		0.20	0.35	0.08		0.76		0.41	0.35	
Control Delay	10.2	18.4		8.5	13.5	0.6		82.2		55.8	23.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	10.2	18.4		8.5	13.5	0.6		82.2		55.8	23.1	
LOS	В	В		Α	В	Α		F		Е	С	
Approach Delay		17.5			12.0			82.2			35.9	
Approach LOS		В			В			F			D	

Synchro 10 Report Baseline Page 1

Intersection Summary		
Area Type:	Other	
Cycle Length: 160		
Actuated Cycle Length: 16	0	
Offset: 102.9 (64%), Refere	enced to phase 2:WBTL and 6:EBTL,	Start of Yellow
Natural Cycle: 95		
Control Type: Actuated-Co	ordinated	
Maximum v/c Ratio: 0.76		
Intersection Signal Delay: 2	20.8	Intersection LOS: C
Intersection Capacity Utiliz	ation 72.7%	ICU Level of Service C
Analysis Period (min) 15		

Splits and Phases: 1: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	•	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ⊅		ሻ	^	7		4		7	₽	
Traffic Volume (veh/h)	142	1115	41	51	696	78	51	29	54	86	35	98
Future Volume (veh/h)	142	1115	41	51	696	78	51	29	54	86	35	98
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1856	1856	1900	1856	1870	1900	1900	1900	1885	1900	1900
Adj Flow Rate, veh/h	153	1199	44	55	748	84	55	31	58	92	38	105
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	3	3	0	3	2	0	0	0	1	0	0
Cap, veh/h	549	2270	83	311	2234	1004	88	45	69	255	91	252
Arrive On Green	0.04	0.65	0.65	0.06	1.00	1.00	0.11	0.11	0.11	0.06	0.21	0.21
Sat Flow, veh/h	1810	3468	127	1810	3526	1585	510	403	616	1795	445	1231
Grp Volume(v), veh/h	153	609	634	55	748	84	144	0	0	92	0	143
Grp Sat Flow(s), veh/h/ln	1810	1763	1833	1810	1763	1585	1529	0	0	1795	0	1676
Q Serve(g_s), s	4.8	29.2	29.2	1.7	0.0	0.0	12.8	0.0	0.0	7.1	0.0	11.9
Cycle Q Clear(g_c), s	4.8	29.2	29.2	1.7	0.0	0.0	14.7	0.0	0.0	7.1	0.0	11.9
Prop In Lane	1.00	23.2	0.07	1.00	0.0	1.00	0.38	0.0	0.40	1.00	0.0	0.73
Lane Grp Cap(c), veh/h	549	1154	1199	311	2234	1004	201	0	0.40	255	0	344
V/C Ratio(X)	0.28	0.53	0.53	0.18	0.33	0.08	0.71	0.00	0.00	0.36	0.00	0.42
Avail Cap(c_a), veh/h	580	1154	1199	369	2234	1004	311	0.00	0.00	255	0.00	466
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
,	9.1	14.6	14.6	11.4	0.0	0.0	69.6	0.00	0.00	56.8	0.00	55.3
Uniform Delay (d), s/veh	0.3	1.7	1.7		0.0	0.0	4.7	0.0	0.0	0.9	0.0	0.8
Incr Delay (d2), s/veh	0.0			0.3	0.4		0.0	0.0		0.9		
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0			0.0	3.3	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	11.5	12.0	0.7	0.1	0.0	6.1	0.0	0.0	3.3	0.0	5.1
Unsig. Movement Delay, s/veh		40.0	40.0	44.7	0.4	0.0	74.0	0.0	0.0	F7.0	0.0	FC 4
LnGrp Delay(d),s/veh	9.4	16.3	16.3	11.7	0.4	0.2	74.2	0.0	0.0	57.6	0.0	56.1
LnGrp LOS	A	В	В	В	A	Α	E	Α	А	E	A	E
Approach Vol, veh/h		1396			887			144			235	
Approach Delay, s/veh		15.5			1.1			74.2			56.7	
Approach LOS		В			Α			E			Е	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.2	107.5		39.3	9.9	110.8	15.0	24.3				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 9.8	86.9		44.5	* 9.7	87.9	8.9	29.5				
Max Q Clear Time (g_c+l1), s	6.8	2.0		13.9	3.7	31.2	9.1	16.7				
Green Ext Time (p_c), s	0.1	13.3		0.9	0.0	23.6	0.0	0.6				
Intersection Summary												
HCM 6th Ctrl Delay			17.5									
HCM 6th LOS			В									
Notos												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	٠	→	•	•	←	•	4	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ }		ሻ	^	7		4			ĵ»	
Traffic Volume (vph)	29	1225	15	2	794	42	6	1	2	31	0	41
Future Volume (vph)	29	1225	15	2	794	42	6	1	2	31	0	41
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	100		100	0		0	0		0
Storage Lanes	1		0	1		1	0		0	0		0
Taper Length (ft)	25			25			25			25		
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		415			1148			1035			349	
Travel Time (s)		6.3			17.4			23.5			7.9	
Confl. Peds. (#/hr)			2	2								
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	4%	3%	0%	0%	3%	7%	0%	0%	0%	0%	0%	10%
Shared Lane Traffic (%)												
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Capacity Utiliza	ation 45.4%			IC	U Level	of Service	Α					
Analysis Period (min) 15												

Synchro 10 Report Page 4 Baseline

2: Rosser Terrace/Site Driveway/Fuller Way & Hugh Howell Rd

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ }		ř	^	7		4			f)	
Traffic Vol, veh/h	29	1225	15	2	794	42	6	1	2	31	0	41
Future Vol, veh/h	29	1225	15	2	794	42	6	1	2	31	0	41
Conflicting Peds, #/hr	0	0	2	2	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	100	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	4	3	0	0	3	7	0	0	0	0	0	10
Mvmt Flow	30	1276	16	2	827	44	6	1	2	32	0	43
Major/Minor N	Major1		I	Major2			Minor1		N	/linor2		
Conflicting Flow All	871	0	0	1294	0	0	1764	2221	648	1530	2185	414
Stage 1	-	-	-	-	-	-	1346	1346	-	831	831	-
Stage 2	-	-	-	-	-	-	418	875	-	699	1354	-
Critical Hdwy	4.18	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	7.1
Critical Hdwy Stg 1	-	-	_	-	_	_	5.5	5.5	-	5.5	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.5	5.5	-	5.5	5.5	-
Follow-up Hdwy	2.24	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.4
Pot Cap-1 Maneuver	757	_	_	542	_	_	55	44	418	82	46	565
Stage 1	-	-	-	-	-	-	236	222	-	421	387	-
Stage 2	-	-	-	-	-	-	661	370	-	487	220	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	757	-	-	541	-	-	49	42	417	78	44	565
Mov Cap-2 Maneuver	-	-	-	-	-	-	166	137	-	232	142	-
Stage 1	-	-	-	-	-	-	226	213	-	404	385	-
Stage 2	-	-	-	-	-	-	609	369	-	463	211	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0			25.3			11.9		
HCM LOS	U.Z			U			23.3 D			П.9		
TOW LOO							U			U		
Minor Long/Major Mare	4	JDI ~1	EDI	EDT	EDD	WDI	WDT	WDD	CDI ~1			
Minor Lane/Major Mvm	it l	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR :				
Capacity (veh/h)		187	757	-	-	541	-	-	565			
HCM Control Doloy (a)		0.05	0.04	-		0.004	-		0.076			
HCM Control Delay (s)		25.3	10	-	-	11.7	-	-	11.9			
HCM Ceth % tile O(voh)		D	Α	-	-	В	-	-	В			
HCM 95th %tile Q(veh)		0.2	0.1	-	-	0	-	-	0.2			

	۶	→	•	•	←	•	1	†	<i>></i>	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		*	↑ ↑			4			4	
Traffic Volume (vph)	5	998	201	52	658	6	133	1	75	28	10	4
Future Volume (vph)	5	998	201	52	658	6	133	1	75	28	10	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	12	12	14	12
Storage Length (ft)	150		0	100		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	60			50			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		1148			648			819			1228	
Travel Time (s)		17.4			9.8			16.0			23.9	
Confl. Peds. (#/hr)			2	2								
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	20%	3%	1%	10%	3%	0%	3%	0%	13%	7%	0%	0%
Shared Lane Traffic (%)												
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	110.0		15.0	110.0		35.0	35.0		35.0	35.0	
Total Split (%)	9.4%	68.8%		9.4%	68.8%		21.9%	21.9%		21.9%	21.9%	
Maximum Green (s)	8.9	103.6		9.1	103.6		28.9	28.9		29.1	29.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	15.0		0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		18.0			18.0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	6.2	109.3		8.6	118.6			26.2			26.4	
Actuated g/C Ratio	0.04	0.68		0.05	0.74			0.16			0.16	
v/c Ratio	0.09	0.54		0.62	0.27			0.88			0.18	
Control Delay	90.8	6.2		103.1	7.7			93.2			54.2	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	90.8	6.2		103.1	7.7			93.2			54.2	
LOS	F	A		F	A			F			D	
Approach Delay		6.5			14.6			93.2			54.2	
Approach LOS		A			В			F			D	
, ipprodon 200		/ \						'				

Intersection Summary		
Area Type: Other		
Cycle Length: 160		
Actuated Cycle Length: 160		
Offset: 118.6 (74%), Referenced to phase 2:W	/BT and 6:EBT, Start of Yellow	
Natural Cycle: 80		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.88		
Intersection Signal Delay: 18.5	Intersection LOS: B	
Intersection Capacity Utilization 67.3%	ICU Level of Service C	
Analysis Period (min) 15		

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

	ᄼ	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ }		ሻ	↑ ↑			4			4	
Traffic Volume (veh/h)	5	998	201	52	658	6	133	1	75	28	10	4
Future Volume (veh/h)	5	998	201	52	658	6	133	1	75	28	10	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1604	1856	1856	1752	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	5	1051	212	55	693	6	140	1	79	29	11	4
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	20	3	3	10	3	3	0	0	0	0	0	0
Cap, veh/h	10	2028	408	69	2606	23	190	1	86	174	63	20
Arrive On Green	0.01	1.00	1.00	0.04	0.73	0.73	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1527	2924	588	1668	3582	31	1021	7	576	914	423	134
Grp Volume(v), veh/h	5	632	631	55	341	358	220	0	0	44	0	0
Grp Sat Flow(s), veh/h/ln	1527	1763	1749	1668	1763	1850	1605	0	0	1470	0	0
Q Serve(g_s), s	0.5	0.0	0.0	5.2	10.5	10.5	17.6	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.5	0.0	0.0	5.2	10.5	10.5	21.5	0.0	0.0	3.9	0.0	0.0
Prop In Lane	1.00	0.0	0.34	1.00	10.5	0.02	0.64	0.0	0.36	0.66	0.0	0.09
Lane Grp Cap(c), veh/h	1.00	1223	1213	69	1282	1346	278	0	0.50	258	0	0.03
V/C Ratio(X)	0.53	0.52	0.52	0.80	0.27	0.27	0.79	0.00	0.00	0.17	0.00	0.00
Avail Cap(c_a), veh/h	85	1223	1213	95	1282	1346	325	0.00	0.00	307	0.00	0.00
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	78.8	0.0	0.0	76.0	7.4	7.4	66.6	0.00	0.00	59.3	0.00	0.00
	38.4	1.6	1.6	27.0	0.5	0.5	10.9	0.0	0.0	0.3	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	2.7	3.8	4.0	9.7	0.0	0.0	1.6	0.0	0.0
%ile BackOfQ(50%),veh/ln		0.5	0.5	2.1	ა.0	4.0	9.1	0.0	0.0	1.0	0.0	0.0
Unsig. Movement Delay, s/veh		4.0	4.0	400.4	7.0	7.0	77 5	0.0	0.0	F0 7	0.0	0.0
LnGrp Delay(d),s/veh	117.2	1.6	1.6	103.1	7.9	7.9	77.5	0.0	0.0	59.7	0.0	0.0
LnGrp LOS	F	A	A	F	A	A	E	A	A	<u>E</u>	A	A
Approach Vol, veh/h		1268			754			220			44	
Approach Delay, s/veh		2.0			14.8			77.5			59.7	
Approach LOS		Α			В			Е			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.1	122.8		30.1	12.5	117.4		30.1				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 1E2		28.9	* 9.1	* 1E2		* 29				
Max Q Clear Time (g_c+l1), s	2.5	12.5		23.5	7.2	2.0		5.9				
Green Ext Time (p_c), s	0.0	10.0		0.5	0.0	28.9		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			14.6									
HCM 6th LOS			14.0 B									
			В									
Notes												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Lanes, Volumes, Timings 1: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	۶	→	•	•	-	•	1	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ħβ		ሻ	^	7		4		ሻ	f)	
Traffic Volume (vph)	47	434	11	19	746	38	22	7	35	24	5	32
Future Volume (vph)	47	434	11	19	746	38	22	7	35	24	5	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	10	10	10
Storage Length (ft)	125		0	115		0	0		0	0		0
Storage Lanes	1		0	1		1	0		0	1		0
Taper Length (ft)	55			65			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		1049			415			1011			510	
Travel Time (s)		15.9			6.3			23.0			11.6	
Confl. Peds. (#/hr)	1		1	1		1						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	0%	5%	9%	0%	4%	0%	0%	0%	0%	10%	0%	0%
Shared Lane Traffic (%)												
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	26.0	85.0		17.0	76.0	76.0	42.0	42.0		16.0	58.0	
Total Split (%)	16.3%	53.1%		10.6%	47.5%	47.5%	26.3%	26.3%		10.0%	36.3%	
Maximum Green (s)	19.8	78.9		11.7	69.9	69.9	35.5	35.5		9.9	51.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	125.9	121.6		123.4	117.8	117.8		9.7		19.3	18.9	
Actuated g/C Ratio	0.79	0.76		0.77	0.74	0.74		0.06		0.12	0.12	
v/c Ratio	0.10	0.18		0.03	0.31	0.03		0.56		0.20	0.18	
Control Delay	5.1	7.2		4.6	8.2	0.1		56.8		61.0	21.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	5.1	7.2		4.6	8.2	0.0		56.8		61.0	21.4	
LOS	A	Α		4.0 A	Α	Α		50.0 E		61.0 E	C	
Approach Delay	Λ	7.0		Α	7.7			56.8		<u> </u>	37.3	
Approach LOS		7.0 A			Α.			50.0 E			57.5 D	
Apploacii LOS		Α			А						D	

Synchro 10 Report Page 1 Baseline

06/22/2021

Intersection Summary	
Area Type: Other	
Cycle Length: 160	
Actuated Cycle Length: 160	
Offset: 148.9 (93%), Referenced to phase 2:WBTL and 6:EBTL,	Start of Yellow
Natural Cycle: 95	
Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.56	
Intersection Signal Delay: 11.0	Intersection LOS: B
Intersection Capacity Utilization 53.6%	ICU Level of Service A
Analysis Period (min) 15	
Splits and Phases: 1: Cowan Rd/The Centre Driveway & Hugh	n Howell Rd
Ø ₁	₩ Ø4
26 s 76 s	58 s
√ø5 →ø6 (R)	Ø7 Ø8

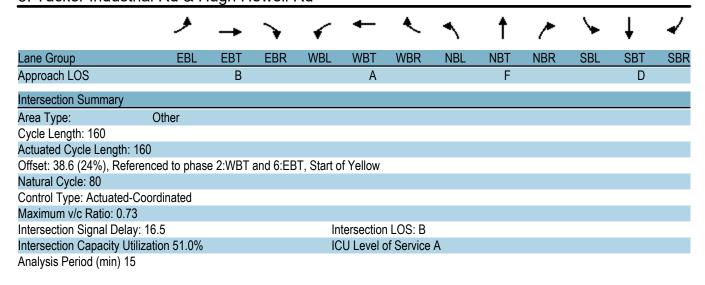
Synchro 10 Report Page 2 Baseline

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ř	∱ î≽		ሻ	^	7		4		7	f)	
Traffic Volume (veh/h)	47	434	11	19	746	38	22	7	35	24	5	32
Future Volume (veh/h)	47	434	11	19	746	38	22	7	35	24	5	32
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1900	1841	1900	1900	1900	1900	1752	1900	1900
Adj Flow Rate, veh/h	51	467	12	20	802	41	24	8	38	26	5	34
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	5	5	0	4	0	0	0	0	10	0	0
Cap, veh/h	598	2602	67	742	2541	1169	55	17	49	150	25	167
Arrive On Green	0.04	0.75	0.75	0.04	1.00	1.00	0.06	0.06	0.06	0.02	0.12	0.12
Sat Flow, veh/h	1810	3456	89	1810	3497	1609	431	294	861	1668	211	1432
Grp Volume(v), veh/h	51	234	245	20	802	41	70	0	0	26	0	39
Grp Sat Flow(s), veh/h/ln	1810	1735	1810	1810	1749	1609	1587	0	0	1668	0	1642
Q Serve(g_s), s	1.1	6.2	6.2	0.5	0.0	0.0	5.2	0.0	0.0	2.3	0.0	3.4
Cycle Q Clear(g_c), s	1.1	6.2	6.2	0.5	0.0	0.0	6.9	0.0	0.0	2.3	0.0	3.4
Prop In Lane	1.00	0.2	0.05	1.00	0.0	1.00	0.34	0.0	0.54	1.00	0.0	0.87
Lane Grp Cap(c), veh/h	598	1306	1363	742	2541	1169	121	0	0.01	150	0	192
V/C Ratio(X)	0.09	0.18	0.18	0.03	0.32	0.04	0.58	0.00	0.00	0.17	0.00	0.20
Avail Cap(c_a), veh/h	751	1306	1363	841	2541	1169	377	0.00	0.00	218	0.00	529
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	4.5	5.6	5.6	5.2	0.0	0.0	74.3	0.0	0.0	67.1	0.0	63.9
Incr Delay (d2), s/veh	0.1	0.3	0.3	0.0	0.3	0.1	4.3	0.0	0.0	0.5	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	2.1	2.2	0.0	0.0	0.0	3.0	0.0	0.0	1.0	0.0	1.5
Unsig. Movement Delay, s/veh		۷.۱	۷.۷	0.2	0.1	0.0	5.0	0.0	0.0	1.0	0.0	1.0
LnGrp Delay(d),s/veh	4.6	5.9	5.9	5.2	0.3	0.1	78.6	0.0	0.0	67.7	0.0	64.4
LnGrp LOS	4.0 A	J.9 A	3.9 A	J.Z A	0.5 A	Α	70.0 E	Α	Α	67.7 E	Α	04.4 E
						^	<u> </u>	70		<u> </u>		
Approach Vol, veh/h		530			863						65 65.7	
Approach Delay, s/veh		5.8			0.4			78.6			65.7	
Approach LOS		А			Α			E			Е	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.5	122.3		25.2	8.2	126.6	9.5	15.7				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 20	69.9		51.5	* 12	78.9	9.9	35.5				
Max Q Clear Time (g_c+I1), s	3.1	2.0		5.4	2.5	8.2	4.3	8.9				
Green Ext Time (p_c), s	0.1	13.8		0.2	0.0	6.1	0.0	0.3				
Intersection Summary												
HCM 6th Ctrl Delay			8.7									
HCM 6th LOS			Α									
Notes												

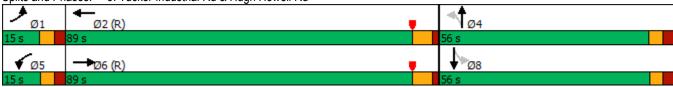
^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	•	→	•	•	←	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ħβ		ň	^	7		4			f)	
Traffic Volume (vph)	28	394	67	66	697	10	68	0	65	19	0	31
Future Volume (vph)	28	394	67	66	697	10	68	0	65	19	0	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	100		100	0		0	0		0
Storage Lanes	1		0	1		1	0		0	0		0
Taper Length (ft)	25			25			25			25		
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		415			1148			1035			349	
Travel Time (s)		6.3			17.4			23.5			7.9	
Confl. Peds. (#/hr)	1		1	1		1						
Confl. Bikes (#/hr)			1									
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	7%	3%	0%	0%	2%	10%	33%	0%	0%	10%	0%	0%
Shared Lane Traffic (%)												
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												

Intersection Capacity Utilization 44.0%
Analysis Period (min) 15


ICU Level of Service A

Synchro 10 Report Baseline Page 4

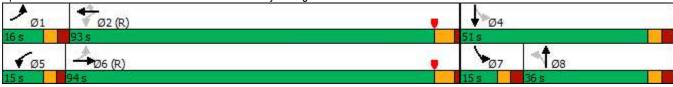

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ĭ	ħβ		ķ	^	7		4			f)	
Traffic Vol, veh/h	28	394	67	66	697	10	68	0	65	19	0	31
Future Vol, veh/h	28	394	67	66	697	10	68	0	65	19	0	31
Conflicting Peds, #/hr	1	0	1	1	0	1	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	100	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	7	3	0	0	2	10	33	0	0	10	0	0
Mvmt Flow	30	424	72	71	749	11	73	0	70	20	0	33
Major/Minor N	Major1			Major2			Minor1		N	/linor2		
Conflicting Flow All	761	0	0	497	0	0	1038	1424	249	1164	1449	376
Stage 1	-	-	-	-	-	-	521	521		892	892	-
Stage 2	_	-	_	_	_	_	517	903	-	272	557	-
Critical Hdwy	4.24	-	-	4.1	-	-	8.16	6.5	6.9	7.7	6.5	6.9
Critical Hdwy Stg 1		-	_		_	_	5.5	5.5	-	5.5	5.5	-
Critical Hdwy Stg 2	_	_	_	_	_	-	5.5	5.5	_	5.5	5.5	-
Follow-up Hdwy	2.27	_	_	2.2	_	_	3.83	4	3.3	3.6	4	3.3
Pot Cap-1 Maneuver	815	_	_	1077	_	_	148	137	757	140	132	627
Stage 1	-	_	_	-	_	_	552	535	-	387	363	-
Stage 2	-	_	-	_	-	-	555	359	-	754	515	-
Platoon blocked, %		_	_		_	_	- 555	- 500		. • •		
Mov Cap-1 Maneuver	814	_	_	1076	_	-	129	123	756	117	119	626
Mov Cap-2 Maneuver	-	-	_	_	_	_	284	226	-	258	225	-
Stage 1	_	_	-	_	-	-	531	515	_	372	339	-
Stage 2	_	_	_	_	_	_	491	335	_	659	495	_
3.0.g0 =												
Approach	EB			WB			NB			SB		
	0.5			0.7			18.5			11.1		
HCM LOS	0.5			0.7			18.5 C					
HCM LOS							U			В		
Minor Long Marian Ma		UDL 4	EDI	EDT	EDD	MDI	WOT	WDD	CDL 4			
Minor Lane/Major Mvm	t f	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR :				
Capacity (veh/h)		409	814	-	-	1076	-	-	626			
HCM Lane V/C Ratio			0.037	-		0.066	-		0.053			
HCM Control Delay (s)		18.5	9.6	-	-	8.6	-	-	11.1			
HCM Lane LOS		C	A	-	-	A	-	-	В			
HCM 95th %tile Q(veh)		1.5	0.1	-	-	0.2	-	-	0.2			

	۶	→	•	•	←	•	4	†	~	/	+	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ⊅		ች	↑ ₽			4			4	
Traffic Volume (vph)	8	370	56	33	692	22	78	6	25	6	2	12
Future Volume (vph)	8	370	56	33	692	22	78	6	25	6	2	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	12	12	14	12
Storage Length (ft)	150		0	100		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	60			50			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		1148			648			819			1228	
Travel Time (s)		17.4			9.8			16.0			23.9	
Confl. Peds. (#/hr)	1					1			1	1		
Confl. Bikes (#/hr)			1									
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	5%	4%	12%	3%	10%	10%	0%	12%	0%	0%	0%
Shared Lane Traffic (%)												
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	89.0		15.0	89.0		56.0	56.0		56.0	56.0	
Total Split (%)	9.4%	55.6%		9.4%	55.6%		35.0%	35.0%		35.0%	35.0%	
Maximum Green (s)	8.9	82.6		9.1	82.6		49.9	49.9		50.1	50.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	15.0		0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		18.0			18.0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	6.4	116.3		9.1	126.2			18.5			18.7	
Actuated g/C Ratio	0.04	0.73		0.06	0.79			0.12			0.12	
v/c Ratio	0.13	0.19		0.41	0.29			0.73			0.10	
Control Delay	69.4	9.3		85.0	5.9			85.2			35.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	69.4	9.3		85.0	5.9			85.2			35.0	
LOS	Е	Α		F	Α			F			D	
Approach Delay		10.4			9.4			85.2			35.0	

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

	ၨ	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		ሻ	∱ ∱			4			4	
Traffic Volume (veh/h)	8	370	56	33	692	22	78	6	25	6	2	12
Future Volume (veh/h)	8	370	56	33	692	22	78	6	25	6	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1722	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	9	411	62	37	769	24	87	7	28	7	2	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	0	5	5	12	3	3	0	0	0	0	0	0
Cap, veh/h	19	2299	344	46	2718	85	145	9	34	68	29	98
Arrive On Green	0.02	1.00	1.00	0.03	0.78	0.78	0.09	0.09	0.09	0.09	0.09	0.09
Sat Flow, veh/h	1810	3016	451	1640	3490	109	1126	93	363	406	311	1037
Grp Volume(v), veh/h	9	235	238	37	388	405	122	0	0	22	0	0
Grp Sat Flow(s), veh/h/ln	1810	1735	1733	1640	1763	1836	1581	0	0	1755	0	0
Q Serve(g_s), s	0.8	0.0	0.0	3.6	10.0	10.0	10.2	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.8	0.0	0.0	3.6	10.0	10.0	12.0	0.0	0.0	1.8	0.0	0.0
Prop In Lane	1.00	0.0	0.26	1.00	10.0	0.06	0.71	0.0	0.23	0.32	0.0	0.59
Lane Grp Cap(c), veh/h	1.00	1322	1321	46	1373	1430	188	0	0.23	196	0	0.59
V/C Ratio(X)	0.48	0.18	0.18	0.80	0.28	0.28	0.65	0.00	0.00	0.11	0.00	0.00
Avail Cap(c_a), veh/h	101	1322	1321	93	1373	1430	522	0.00	0.00	548	0.00	0.00
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00		0.00	0.00	1.00	0.00	
Upstream Filter(I)	77.9		0.0		5.0	5.0	1.00			66.4		0.00
Uniform Delay (d), s/veh		0.0		77.3			70.9	0.0	0.0		0.0	0.0
Incr Delay (d2), s/veh	18.1	0.3	0.3	25.9	0.5	0.5	3.7	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.1	0.1	1.8	3.3	3.4	5.1	0.0	0.0	8.0	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	400.0			74.0	0.0	0.0	00.7	0.0	0.0
LnGrp Delay(d),s/veh	96.0	0.3	0.3	103.2	5.5	5.5	74.6	0.0	0.0	66.7	0.0	0.0
LnGrp LOS	F	Α	Α	F	A	Α	E	Α	Α	E	Α	A
Approach Vol, veh/h		482			830			122			22	
Approach Delay, s/veh		2.1			9.9			74.6			66.7	
Approach LOS		Α			Α			E			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.7	131.0		21.2	10.4	128.4		21.2				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 83		49.9	* 9.1	* 83		* 50				
Max Q Clear Time (g c+l1), s	2.8	12.0		14.0	5.6	2.0		3.8				
Green Ext Time (p_c), s	0.0	11.9		0.7	0.0	6.1		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			13.6									
HCM 6th LOS			В									
Notos												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.


Lanes, Volumes, Timings 1: Cowan Rd/The Centre Driveway & Hugh Howell Rd

Lane Groung		۶	→	•	•	←	•	4	†	<i>></i>	/	ţ	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	ሻ	↑ 1≽		ሻ	^	7		43-		ሻ	î,	
Fluture Volume (vph)				41	55		81	51		58	89		98
Ideal Flow (ryphpi)		142	1145	41	55	723	81	51	29	58	89	35	
Lane Width (ft)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	(, , ,	12	12	12	12	12	12	12	12	12	10	10	
Storage Lanes	. ,	125		0	115		0	0		0	0		
Taper Length (ff)		1		0	1		1	0		0	1		0
Link Speed (mph) 45 45 30 30 Link Distance (ft) 1049 415 1011 510 Travel Time (s) 15.9 6.3 23.0 11.6 Confl. Peds. (#hr)		55			65			25			25		
Link Spead (mph) Link Distance (ft) 1049 415 1011 17avel Time (s) 15.9 6.3 23.0 11.6 Confl. Peds. (#/hr) Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (ft)			45			45			30			30	
Confi. Peds. (#hr)			1049			415			1011			510	
Peak Hour Factor 0.93 0.	Travel Time (s)		15.9			6.3			23.0			11.6	
Heavy Vehicles (%)	Confl. Peds. (#/hr)									1	1		
Shared Lane Traffic (%) Turn Type	Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%) Turn Type	Heavy Vehicles (%)	0%	3%	0%	0%	3%	2%	0%	0%	4%	1%	0%	0%
Tum Type													
Protected Phases	Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Detector Phase 1 6 5 2 2 8 8 7 4	Protected Phases		6			2			8			4	
Switch Phase Minimum Initial (s) 7.0 10.0 5.0 10.0 10.0 7.0 7.0 5.0 7.0 Minimum Initial (s) 13.2 27.4 10.3 32.1 32.1 35.5 35.5 11.1 35.5 35.	Permitted Phases	6			2		2	8			4		
Minimum Initial (s) 7.0 10.0 5.0 10.0 10.0 7.0 7.0 5.0 7.0 Minimum Spit (s) 13.2 27.4 10.3 32.1 32.1 35.5 35.5 11.1 35.5 Total Spit (%) 10.0% 58.8% 9.4% 58.1% 22.5% 22.5% 9.4% 31.9% Maximum Green (s) 9.8 87.9 9.7 86.9 86.9 29.5 29.5 8.9 44.5 Yellow Time (s) 3.4 4.6 3.1 4.6 4.6 3.5 3.5 3.1 3.5 All-Red Time (s) 2.8 1.5 2.2 1.5 1.5 3.0	Detector Phase	1	6		5	2	2	8	8		7	4	
Minimum Split (s) 13.2 27.4 10.3 32.1 32.1 35.5 35.5 11.1 35.5 Total Split (s) 16.0 94.0 15.0 93.0 93.0 36.0 36.0 15.0 51.0 Total Split (s) 10.0% 58.8% 9.4% 58.1% 58.1% 22.5% 22.5% 9.4% 31.9% Maximum Green (s) 9.8 87.9 9.7 86.9 86.9 29.5 29.5 8.9 44.5 Yellow Time (s) 3.4 4.6 3.1 4.6 4.6 35.35 3.1 3.5 All-Red Time (s) 2.8 1.5 2.2 1.5 1.5 3.0 3.0 3.0 3.0 Lost Time Adjust (s) 0.0	Switch Phase												
Minimum Split (s) 13.2 27.4 10.3 32.1 32.1 35.5 35.5 11.1 35.5 Total Split (s) 16.0 94.0 15.0 93.0 93.0 36.0 36.0 15.0 51.0 Total Split (s) 10.0% 58.8% 9.4% 58.1% 58.1% 22.5% 22.5% 9.4% 31.9% Maximum Green (s) 9.8 87.9 9.7 86.9 86.9 29.5 29.5 8.9 44.5 Yellow Time (s) 3.4 4.6 3.1 4.6 4.6 3.5 3.5 3.1 3.5 All-Red Time (s) 2.8 1.5 2.2 1.5 1.5 3.0 3.0 3.0 3.0 Lost Time Adjust (s) 0.0	Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Total Split (s) 16.0 94.0 15.0 93.0 93.0 36.0 36.0 15.0 51.0 Total Split (%) 10.0% 58.8% 9.4% 58.1% 58.1% 22.5% 22.5% 9.4% 31.9% Maximum Green (s) 9.8 87.9 9.7 86.9 86.9 29.5 29.5 8.9 44.5 Yellow Time (s) 3.4 4.6 3.1 4.6 4.6 3.5 3.5 3.1 3.5 All-Red Time (s) 2.8 1.5 2.2 1.5 1.5 3.0 3.0 3.0 3.0 Lost Time Adjust (s) 0.0		13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (%) 10.0% 58.8% 9.4% 58.1% 58.1% 22.5% 22.5% 9.4% 31.9% Maximum Green (s) 9.8 87.9 9.7 86.9 86.9 29.5 29.5 8.9 44.5 Yellow Time (s) 3.4 4.6 3.1 4.6 4.6 3.5 3.5 3.1 3.5 All-Red Time (s) 2.8 1.5 2.2 1.5 1.5 3.0 3.0 3.0 3.0 Lost Time Adjust (s) 0.0		16.0	94.0		15.0	93.0	93.0	36.0	36.0		15.0	51.0	
Yellow Time (s) 3.4 4.6 3.1 4.6 4.6 3.5 3.5 3.1 3.5 All-Red Time (s) 2.8 1.5 2.2 1.5 1.5 3.0 3.0 3.0 3.0 Lost Time Adjust (s) 0.0		10.0%	58.8%		9.4%	58.1%	58.1%	22.5%	22.5%		9.4%	31.9%	
All-Red Time (s) Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		9.8	87.9		9.7	86.9	86.9	29.5	29.5		8.9	44.5	
Lost Time Adjust (s) 0.0	Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
Total Lost Time (s) 6.2 6.1 5.3 6.1 6.1 6.5 6.1 6.5 Lead/Lag Lead Lag Lag Lag Lag Lag Lag Lead Lead-Lag Optimize? Yes	All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lead/Lag Lead Lag Lag Lag Lag Lag Lag Lead Lead-Lag Optimize? Yes	Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Lead-Lag Optimize? Yes	Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead-Lag Optimize? Yes	Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Minimum Gap (s) 0.2 3.0 0.2 3.0 0.2 0.0	Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes			Yes		
Time Before Reduce (s) 0.0 20.0 0.0 20.0 20.0 7.0 7.0 <td>Vehicle Extension (s)</td> <td>3.0</td> <td>5.0</td> <td></td> <td>3.0</td> <td>5.0</td> <td>5.0</td> <td>3.0</td> <td>3.0</td> <td></td> <td>3.0</td> <td>3.0</td> <td></td>	Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Time Before Reduce (s) 0.0 20.0 0.0 20.0 20.0 7.0 9.0 1.0 <td>Minimum Gap (s)</td> <td>0.2</td> <td>3.0</td> <td></td> <td>0.2</td> <td>3.0</td> <td>3.0</td> <td>0.2</td> <td>0.2</td> <td></td> <td>0.2</td> <td>0.2</td> <td></td>	Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Recall Mode None C-Max None C-Max None None None None Walk Time (s) 7.0 22.0 2		0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 10.0 19.0 19.0 22.0 22.0 22.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 Act Effct Green (s) 110.5 102.4 104.8 96.8 96.8 19.8 35.1 34.7 Actuated g/C Ratio 0.69 0.64 0.66 0.60 0.60 0.12 0.22 0.22 0.22 v/c Ratio 0.33 0.57 0.22 0.37 0.09 0.76 0.42 0.35 Control Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 LOS B B A B <	Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Flash Dont Walk (s) 10.0 19.0 19.0 22.0 22.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Act Effct Green (s) 110.5 102.4 104.8 96.8 96.8 19.8 35.1 34.7 Actuated g/C Ratio 0.69 0.64 0.66 0.60 0.60 0.12 0.22 0.22 0.22 v/c Ratio 0.33 0.57 0.22 0.37 0.09 0.76 0.42 0.35 Control Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 2.9 LOS B B A B A F E C Approach Delay 18.1 12.5 8	Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Pedestrian Calls (#/hr) 0 0 0 0 0 Act Effct Green (s) 110.5 102.4 104.8 96.8 96.8 19.8 35.1 34.7 Actuated g/C Ratio 0.69 0.64 0.66 0.60 0.60 0.12 0.22 0.22 v/c Ratio 0.33 0.57 0.22 0.37 0.09 0.76 0.42 0.35 Control Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 LOS B B A B A F E C Approach Delay 18.1 12.5 81.8 36.2 36.2	Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Act Effct Green (s) 110.5 102.4 104.8 96.8 96.8 19.8 35.1 34.7 Actuated g/C Ratio 0.69 0.64 0.66 0.60 0.60 0.12 0.22 0.22 v/c Ratio 0.33 0.57 0.22 0.37 0.09 0.76 0.42 0.35 Control Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 LOS B B A B A F E C Approach Delay 18.1 12.5 81.8 36.2	Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Actuated g/C Ratio 0.69 0.64 0.66 0.60 0.60 0.12 0.22 0.22 v/c Ratio 0.33 0.57 0.22 0.37 0.09 0.76 0.42 0.35 Control Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 LOS B B A B A F E C Approach Delay 18.1 12.5 81.8 36.2	Pedestrian Calls (#/hr)		0			0	0	0	0			0	
v/c Ratio 0.33 0.57 0.22 0.37 0.09 0.76 0.42 0.35 Control Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 Queue Delay 0.0	Act Effct Green (s)	110.5	102.4		104.8	96.8	96.8		19.8		35.1	34.7	
v/c Ratio 0.33 0.57 0.22 0.37 0.09 0.76 0.42 0.35 Control Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 LOS B B A B A F E C Approach Delay 18.1 12.5 81.8 36.2	. ,	0.69	0.64		0.66	0.60	0.60		0.12		0.22	0.22	
Queue Delay 0.0 <th< td=""><td></td><td>0.33</td><td>0.57</td><td></td><td>0.22</td><td>0.37</td><td>0.09</td><td></td><td>0.76</td><td></td><td>0.42</td><td>0.35</td><td></td></th<>		0.33	0.57		0.22	0.37	0.09		0.76		0.42	0.35	
Queue Delay 0.0 <th< td=""><td>Control Delay</td><td>10.5</td><td>19.0</td><td></td><td>9.0</td><td>14.0</td><td>0.9</td><td></td><td>81.8</td><td></td><td>56.1</td><td>22.9</td><td></td></th<>	Control Delay	10.5	19.0		9.0	14.0	0.9		81.8		56.1	22.9	
Total Delay 10.5 19.0 9.0 14.0 0.9 81.8 56.1 22.9 LOS B B A B A F E C Approach Delay 18.1 12.5 81.8 36.2	•	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
LOS B B A B A F E C Approach Delay 18.1 12.5 81.8 36.2	•												
Approach Delay 18.1 12.5 81.8 36.2													
•													
· · · · · · · · · · · · · · · · · · ·	Approach LOS		В			В			F			D	

Synchro 10 Report Page 1 Baseline

Intersection Summary		
Area Type:	Other	
Cycle Length: 160		
Actuated Cycle Length: 160		
Offset: 102.9 (64%), Referen	iced to phase 2:WBTL and 6:EBTL,	Start of Yellow
Natural Cycle: 95		
Control Type: Actuated-Coor	dinated	
Maximum v/c Ratio: 0.76		
Intersection Signal Delay: 21	.2	Intersection LOS: C
Intersection Capacity Utilizati	ion 73.8%	ICU Level of Service D
Analysis Period (min) 15		

Splits and Phases: 1: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	۶	→	•	•	←	•	4	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		ሻ	^	7		4		ሻ	₽	
Traffic Volume (veh/h)	142	1145	41	55	723	81	51	29	58	89	35	98
Future Volume (veh/h)	142	1145	41	55	723	81	51	29	58	89	35	98
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1856	1856	1900	1856	1870	1900	1900	1900	1885	1900	1900
Adj Flow Rate, veh/h	153	1231	44	59	777	87	55	31	62	96	38	105
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	3	3	0	3	2	0	0	0	1	0	0
Cap, veh/h	535	2263	81	300	2226	1001	87	45	73	254	92	255
Arrive On Green	0.04	0.65	0.65	0.06	1.00	1.00	0.11	0.11	0.11	0.06	0.21	0.21
Sat Flow, veh/h	1810	3472	124	1810	3526	1585	496	394	642	1795	445	1231
Grp Volume(v), veh/h	153	625	650	59	777	87	148	0	0	96	0	143
Grp Sat Flow(s), veh/h/ln	1810	1763	1833	1810	1763	1585	1532	0	0	1795	0	1676
Q Serve(g_s), s	4.8	30.6	30.6	1.8	0.0	0.0	13.1	0.0	0.0	7.4	0.0	11.8
Cycle Q Clear(g_c), s	4.8	30.6	30.6	1.8	0.0	0.0	15.1	0.0	0.0	7.4	0.0	11.8
Prop In Lane	1.00	00.0	0.07	1.00	0.0	1.00	0.37	0.0	0.42	1.00	0.0	0.73
Lane Grp Cap(c), veh/h	535	1149	1195	300	2226	1001	205	0	0.12	254	0	348
V/C Ratio(X)	0.29	0.54	0.54	0.20	0.35	0.09	0.72	0.00	0.00	0.38	0.00	0.41
Avail Cap(c_a), veh/h	566	1149	1195	358	2226	1001	311	0.00	0.00	254	0.00	466
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	9.2	15.0	15.0	11.9	0.0	0.0	69.4	0.0	0.0	56.6	0.00	54.9
Incr Delay (d2), s/veh	0.3	1.9	1.8	0.3	0.4	0.2	4.7	0.0	0.0	0.9	0.0	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	12.1	12.6	0.7	0.0	0.0	6.2	0.0	0.0	3.5	0.0	5.1
Unsig. Movement Delay, s/veh		12.1	12.0	0.1	0.1	0.0	0.2	0.0	0.0	3.3	0.0	J. I
LnGrp Delay(d),s/veh	9.5	16.9	16.8	12.2	0.4	0.2	74.1	0.0	0.0	57.5	0.0	55.7
LnGrp LOS	9.5 A	10.9 B	10.0 B	12.2 B	0.4 A	0.2 A	74.1 E	Α	Α	57.5 E	Α	55.7 E
	A		D	D		A	<u> </u>		A			
Approach Vol, veh/h		1428			923			148			239	
Approach Delay, s/veh		16.1			1.2			74.1			56.4	
Approach LOS		В			Α			Е			Е	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.2	107.1		39.7	9.9	110.4	15.0	24.7				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 9.8	86.9		44.5	* 9.7	87.9	8.9	29.5				
Max Q Clear Time (g_c+l1), s	6.8	2.0		13.8	3.8	32.6	9.4	17.1				
Green Ext Time (p_c), s	0.1	14.0		0.9	0.0	24.4	0.0	0.6				
Intersection Summary												
HCM 6th Ctrl Delay			17.7									
HCM 6th LOS			В									
Notes												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	٠	→	*	•	+	4	•	<u></u>	<i>></i>	\		√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		ሻ	^	7		4			₽	
Traffic Volume (vph)	29	1188	89	76	757	42	75	1	70	31	0	41
Future Volume (vph)	29	1188	89	76	757	42	75	1	70	31	0	41
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	100		100	0		0	0		0
Storage Lanes	1		0	1		1	0		0	0		0
Taper Length (ft)	25			25			25			25		
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		415			1148			1035			349	
Travel Time (s)		6.3			17.4			23.5			7.9	
Confl. Peds. (#/hr)			2	2								
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	4%	3%	0%	0%	3%	7%	0%	0%	0%	0%	0%	10%
Shared Lane Traffic (%)												
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalize	d											
Intersection Capacity Utiliz	zation 61.6%			IC	U Level	of Service	В					
Analysis Period (min) 15												

Synchro 10 Report Page 4 Baseline

2: Rosser Terrace/Site Driveway/Fuller Way & Hugh Howell Rd

Intersection													
Int Delay, s/veh	4.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	*	∱ }		*	^	7		4			f		
raffic Vol, veh/h	29	1188	89	76	757	42	75	1	70	31	0	41	
uture Vol, veh/h	29	1188	89	76	757	42	75	1	70	31	0	41	
onflicting Peds, #/hr	0	0	2	2	0	0	0	0	0	0	0	0	
ign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
T Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
torage Length	100	-	-	100	-	100	-	-	-	-	-	-	
eh in Median Storage,	,# -	0	-	-	0	-	-	1	-	-	1	-	
rade, %	-	0	-	-	0	-	-	0	-	-	0	-	
eak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
eavy Vehicles, %	4	3	0	0	3	7	0	0	0	0	0	10	
vmt Flow	30	1238	93	79	789	44	78	1	73	32	0	43	
ajor/Minor N	Major1		N	Major2		ľ	Minor1		N	/linor2			
onflicting Flow All	833	0	0	1333	0	0	1900	2338	668	1627	2340	395	
Stage 1	-	-	_	_	_	_	1347	1347	_	947	947	-	
Stage 2	-	-	_	-	_	-	553	991	-	680	1393	_	
itical Hdwy	4.18	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	7.1	
itical Hdwy Stg 1	-	-	-	-	-	-	5.5	5.5	-	5.5	5.5	-	
itical Hdwy Stg 2	-	-	-	-	-	-	5.5	5.5	-	5.5	5.5	-	
llow-up Hdwy	2.24	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.4	
ot Cap-1 Maneuver	783	-	-	524	-	-	~ 43	37	405	69	37	582	
Stage 1	-	-	-	-	-	-	236	222	-	370	342	-	
Stage 2	-	-	-	-	-	-	571	327	-	497	211	-	
latoon blocked, %		-	-		-	-							
ov Cap-1 Maneuver	783	-	-	523	-	-	~ 34	30	404	48	30	582	
ov Cap-2 Maneuver	-	-	-	-	-	-	148	118	-	173	90	-	
Stage 1	-	-	-	-	-	-	227	213	-	356	290	-	
Stage 2	-	-	-	-	-	-	449	278	-	390	203	-	
pproach	EB			WB			NB			SB			
CM Control Delay, s	0.2			1.1			56			11.7			
CM LOS							F			В			
inor Lane/Major Mvm	t I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBI n1				
apacity (veh/h)		212	783	-	LUIT	523	-	-	582				
CM Lane V/C Ratio			0.039	_	_	0.151		_	0.073				
CM Control Delay (s)		56	9.8		_	13.1	_						
CM Lane LOS		F	3.0 A	_	_	В	_	<u>-</u>	В				
CM 95th %tile Q(veh)		4.7	0.1	-	_	0.5	_	_	0.2				
otes													
	anoity.	¢. D.	lav ava	oodo 20)Oc	L. Com	vutation	Not Do	fined	*. AII .	majory	olumo in	platean
Volume exceeds cap	delly	ą: D€	elay exc	eeus 30	105 -	+: Comp	outation	NOT DE	iiiiea	. All l	najor V	olullie in	platoon

	ၨ	→	•	€	+	•	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	↑ ↑			4			4	
Traffic Volume (vph)	8	1025	205	52	688	6	137	1	75	28	10	7
Future Volume (vph)	8	1025	205	52	688	6	137	1	75	28	10	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	12	12	14	12
Storage Length (ft)	150	· -	0	100		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	60			50			25			25		
Right Turn on Red	- 00		Yes	00		Yes			Yes			Yes
Link Speed (mph)		45	. 00		45	. 00		35			35	. 00
Link Distance (ft)		1148			648			819			1228	
Travel Time (s)		17.4			9.8			16.0			23.9	
Confl. Peds. (#/hr)			2	2	0.0			10.0			20.0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	20%	3%	1%	10%	3%	0%	3%	0%	13%	7%	0%	0.30
Shared Lane Traffic (%)	2070	370	1 70	1070	J 70	0 70	370	0 70	1070	1 /0	0 70	0 70
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2		1 Cilli	4		1 Cilii	8	
Permitted Phases	l I	U		3	L		4	7		8	U	
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase		U		J	2		4	4		U	U	
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	110.0		15.0	110.0		35.0	35.0		35.0	35.0	
Total Split (%)	9.4%	68.8%		9.4%	68.8%		21.9%	21.9%		21.9%	21.9%	
Maximum Green (s)	8.9	103.6		9.4 /0	103.6		28.9	28.9		29.1	29.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
	0.0	0.0		0.0	0.0		2.0	0.0		2.9	0.0	
Lost Time Adjust (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Total Lost Time (s) Lead/Lag	Lead			Lead				0.1			5.9	
•	Yes	Lag Yes		Yes	Lag Yes							
Lead-Lag Optimize?	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Vehicle Extension (s) Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
	0.2	20.0		0.2	20.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)				0.0								
Time To Reduce (s)	0.0	15.0 C-Max			15.0 C-Max		0.0	0.0		0.0	0.0	
Recall Mode	None			None			None	None		None 7.0	None	
Walk Time (s) Flash Dont Walk (s)		7.0			7.0 18.0		7.0	7.0 18.0			7.0	
		18.0 0			10.0		18.0			21.0	21.0	
Pedestrian Calls (#/hr)	C F			0.0	118.2		U	0		U	0	
Act Effet Green (s)	6.5	109.1		8.6				26.4			26.6	
Actuated g/C Ratio	0.04	0.68		0.05	0.74			0.16			0.17	
v/c Ratio	0.13	0.55		0.62	0.28			0.89			0.19	
Control Delay	91.9	6.6		103.1	7.9			95.0			52.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	91.9	6.6		103.1	7.9			95.0			52.0	
LOS	F	A		F	A			F			D	
Approach Delay		7.2			14.6			95.0			52.0	
Approach LOS		Α			В			F			D	

Intersection Summary		
Area Type: Other		
Cycle Length: 160		
Actuated Cycle Length: 160		
Offset: 118.6 (74%), Referenced to phase 2:	:WBT and 6:EBT, Start of Yellow	
Natural Cycle: 80		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.89		
Intersection Signal Delay: 18.9	Intersection LOS: B	
Intersection Capacity Utilization 68.3%	ICU Level of Service C	
Analysis Period (min) 15		

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ነ	∱ ∱		ሻ	∱ ∱			4			4	
Traffic Volume (veh/h)	8	1025	205	52	688	6	137	1	75	28	10	7
Future Volume (veh/h)	8	1025	205	52	688	6	137	1	75	28	10	7
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1604	1856	1856	1752	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	8	1079	216	55	724	6	144	1	79	29	11	7
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	20	3	3	10	3	3	0	0	0	0	0	0
Cap, veh/h	14	2022	403	69	2585	21	194	1	86	169	63	34
Arrive On Green	0.02	1.00	1.00	0.04	0.72	0.72	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1527	2928	584	1668	3583	30	1027	7	564	868	412	224
Grp Volume(v), veh/h	8	648	647	55	356	374	224	0	0	47	0	0
Grp Sat Flow(s), veh/h/ln	1527	1763	1749	1668	1763	1850	1598	0	0	1504	0	0
Q Serve(g_s), s	0.8	0.0	0.0	5.2	11.3	11.3	17.9	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.8	0.0	0.0	5.2	11.3	11.3	22.0	0.0	0.0	4.1	0.0	0.0
Prop In Lane	1.00	0.0	0.33	1.00	11.0	0.02	0.64	0.0	0.35	0.62	0.0	0.15
Lane Grp Cap(c), veh/h	1.00	1217	1208	69	1272	1335	281	0	0.55	266	0	0.10
V/C Ratio(X)	0.56	0.53	0.54	0.80	0.28	0.28	0.80	0.00	0.00	0.18	0.00	0.00
Avail Cap(c_a), veh/h	85	1217	1208	95	1272	1335	324	0.00	0.00	311	0.00	0.00
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	78.2	0.0	0.0	76.0	7.8	7.8	66.4	0.0	0.0	59.0	0.0	0.0
Incr Delay (d2), s/veh	30.1	1.7	1.7	27.0	0.5	0.5	11.4	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.6	0.6	2.7	4.1	4.3	9.9	0.0	0.0	1.7	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	2.1	4.1	4.5	9.9	0.0	0.0	1.7	0.0	0.0
	108.3	1.7	1.7	103.1	8.3	8.3	77.0	0.0	0.0	E0 2	0.0	0.0
LnGrp Delay(d),s/veh							77.8			59.3		
LnGrp LOS	F	A	A	F	A	A	E	A	A	<u>E</u>	A	A
Approach Vol, veh/h		1303			785			224			47	
Approach Delay, s/veh		2.3			15.0			77.8			59.3	
Approach LOS		Α			В			Е			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.6	121.8		30.6	12.5	116.9		30.6				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 1E2		28.9	* 9.1	* 1E2		* 29				
Max Q Clear Time (g_c+I1), s	2.8	13.3		24.0	7.2	2.0		6.1				
Green Ext Time (p_c), s	0.0	10.6		0.5	0.0	30.5		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			14.8									
HCM 6th LOS			В									
Notes												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Lanes, Volumes, Timings 1: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	۶	→	•	•	←	•	4	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	↑ ↑		ሻ	^	7		4		*	f)	
Traffic Volume (vph)	47	434	11	19	746	38	22	7	35	24	5	32
Future Volume (vph)	47	434	11	19	746	38	22	7	35	24	5	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	10	10	10
Storage Length (ft)	125		0	115		0	0		0	0		0
Storage Lanes	1		0	1		1	0		0	1		0
Taper Length (ft)	55			65			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		1049			415			1011			510	
Travel Time (s)		15.9			6.3			23.0			11.6	
Confl. Peds. (#/hr)	1		1	1		1						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	0%	5%	9%	0%	4%	0%	0%	0%	0%	10%	0%	0%
Shared Lane Traffic (%)												
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	26.0	85.0		17.0	76.0	76.0	42.0	42.0		16.0	58.0	
Total Split (%)	16.3%	53.1%		10.6%	47.5%	47.5%	26.3%	26.3%		10.0%	36.3%	
Maximum Green (s)	19.8	78.9		11.7	69.9	69.9	35.5	35.5		9.9	51.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	125.9	121.6		123.4	117.8	117.8		9.7		19.3	18.9	
Actuated g/C Ratio	0.79	0.76		0.77	0.74	0.74		0.06		0.12	0.12	
v/c Ratio	0.10	0.18		0.03	0.31	0.03		0.56		0.20	0.18	
Control Delay	5.1	7.2		4.6	8.2	0.1		56.8		61.0	21.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	5.1	7.2		4.6	8.2	0.1		56.8		61.0	21.4	
LOS	Α	Α		Α	Α	Α		E		Е	С	
Approach Delay		7.0			7.7			56.8			37.3	
Approach LOS		Α			Α			Е			D	

Synchro 10 Report Page 1 Baseline

Intersection Summary		
Area Type: Other		
Cycle Length: 160		
Actuated Cycle Length: 160		
Offset: 148.9 (93%), Referenced to phase	2:WBTL and 6:EBTL, Start of Yellow	
Natural Cycle: 95		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.56		
Intersection Signal Delay: 11.0	Intersection LOS: B	
Intersection Capacity Utilization 53.6%	ICU Level of Service A	
Analysis Period (min) 15		
Splits and Phases: 1: Cowan Rd/The C	entre Driveway & Hugh Howell Rd	
▶ _{Ø1} ♥ _{Ø2 (R)}	■ 04	
26 s 76 s	58 s	

	•	→	•	•	←	•	•	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		ሻ	^	7		4		7	ĵ₃	
Traffic Volume (veh/h)	47	434	11	19	746	38	22	7	35	24	5	32
Future Volume (veh/h)	47	434	11	19	746	38	22	7	35	24	5	32
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1900	1841	1900	1900	1900	1900	1752	1900	1900
Adj Flow Rate, veh/h	51	467	12	20	802	41	24	8	38	26	5	34
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	5	5	0	4	0	0	0	0	10	0	0
Cap, veh/h	598	2602	67	742	2541	1169	55	17	49	150	25	167
Arrive On Green	0.04	0.75	0.75	0.04	1.00	1.00	0.06	0.06	0.06	0.02	0.12	0.12
Sat Flow, veh/h	1810	3456	89	1810	3497	1609	431	294	861	1668	211	1432
Grp Volume(v), veh/h	51	234	245	20	802	41	70	0	0	26	0	39
Grp Sat Flow(s),veh/h/ln	1810	1735	1810	1810	1749	1609	1587	0	0	1668	0	1642
Q Serve(g_s), s	1.1	6.2	6.2	0.5	0.0	0.0	5.2	0.0	0.0	2.3	0.0	3.4
Cycle Q Clear(g_c), s	1.1	6.2	6.2	0.5	0.0	0.0	6.9	0.0	0.0	2.3	0.0	3.4
Prop In Lane	1.00	V	0.05	1.00	0.0	1.00	0.34	0.0	0.54	1.00	0.0	0.87
Lane Grp Cap(c), veh/h	598	1306	1363	742	2541	1169	121	0	0	150	0	192
V/C Ratio(X)	0.09	0.18	0.18	0.03	0.32	0.04	0.58	0.00	0.00	0.17	0.00	0.20
Avail Cap(c_a), veh/h	751	1306	1363	841	2541	1169	377	0	0	218	0	529
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	4.5	5.6	5.6	5.2	0.0	0.0	74.3	0.0	0.0	67.1	0.0	63.9
Incr Delay (d2), s/veh	0.1	0.3	0.3	0.0	0.3	0.1	4.3	0.0	0.0	0.5	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	2.1	2.2	0.2	0.1	0.0	3.0	0.0	0.0	1.0	0.0	1.5
Unsig. Movement Delay, s/veh		2.1		0.2	0.1	0.0	0.0	0.0	0.0	1.0	0.0	1.0
LnGrp Delay(d),s/veh	4.6	5.9	5.9	5.2	0.3	0.1	78.6	0.0	0.0	67.7	0.0	64.4
LnGrp LOS	A	A	A	A	A	A	E	A	A	E	A	E
Approach Vol, veh/h		530			863			70	,,	<u> </u>	65	
Approach Delay, s/veh		5.8			0.4			78.6			65.7	
Approach LOS		Α			Α			70.0 E			65.7 E	
							_					
Timer - Assigned Phs	1 10.5	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.5	122.3		25.2	8.2	126.6	9.5	15.7				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 20	69.9		51.5	* 12	78.9	9.9	35.5				
Max Q Clear Time (g_c+I1), s	3.1	2.0		5.4	2.5	8.2	4.3	8.9				
Green Ext Time (p_c), s	0.1	13.8		0.2	0.0	6.1	0.0	0.3				
Intersection Summary												
HCM 6th Ctrl Delay			8.7									
HCM 6th LOS			Α									
Notes												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

0.93

Stop

0%

0.93

0%

EBT

ħ۵

394

394

1900

45

415 6.3

0.93

3%

Free

EBR

67

67

0

0

1

0.93

0%

1900

EBL

ች

28

28

1900

100

1

25

1

0.93

7%

€

WBL

66

66

1900

100

1

25

1

0.93

0%

Hugh	Howe	ll Rd				06/2	2/2021
←	•	4	†	/	>	ļ	4
WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
^	7		ર્ન	7		f)	
697	10	68	0	65	19	0	31
697	10	68	0	65	19	0	31
1900	1900	1900	1900	1900	1900	1900	1900
	100	0		25	0		0
	1	0		1	0		0
		25			25		
45			30			30	
1148			1035			349	
17.4			23.5			7.9	
	1						

Intersection Summary

Shared Lane Traffic (%)

Area Type:

Sign Control

Lane Group

Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Ideal Flow (vphpl)

Storage Length (ft)

Storage Lanes

Taper Length (ft)

Link Speed (mph)

Link Distance (ft)

Confl. Bikes (#/hr)

Peak Hour Factor

Heavy Vehicles (%)

Travel Time (s) Confl. Peds. (#/hr)

Other

Control Type: Unsignalized

Intersection Capacity Utilization 42.2%

ICU Level of Service A

0.93

2%

Free

0.93

10%

0.93

33%

0.93

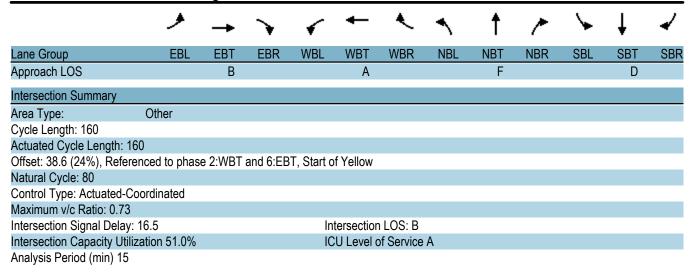
0%

Stop

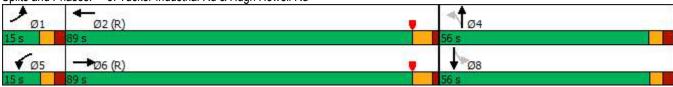
0.93

0%

0.93


10%

Analysis Period (min) 15


2: Rosser Terrace/Site Driveway/Fuller Way & Hugh Howell Rd

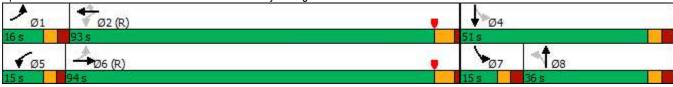
Intersection												
Int Delay, s/veh	2.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ķ	ħβ		ķ	^	7		4	7		f)	
Traffic Vol, veh/h	28	394	67	66	697	10	68	Ö	65	19	0	31
Future Vol, veh/h	28	394	67	66	697	10	68	0	65	19	0	31
Conflicting Peds, #/hr	1	0	1	1	0	1	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	100	-	-	25	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	7	3	0	0	2	10	33	0	0	10	0	0
Mvmt Flow	30	424	72	71	749	11	73	0	70	20	0	33
Major/Minor N	/lajor1			Major2			Minor1		N	/linor2		
Conflicting Flow All	761	0	0	497	0	0	1038	1424	249	1164	1449	376
Stage 1	-	-	-	-	-	-	521	521	-	892	892	-
Stage 2	_	_	_	_	_	_	517	903	<u>-</u>	272	557	_
Critical Hdwy	4.24	_	_	4.1	_	_	8.16	6.5	6.9	7.7	6.5	6.9
Critical Hdwy Stg 1	- 1.2	<u>-</u>	_	T. I	<u>-</u>	_	5.5	5.5	-	5.5	5.5	0.5
Critical Hdwy Stg 2	_	_	_	_	_	_	5.5	5.5	_	5.5	5.5	_
Follow-up Hdwy	2.27	<u>-</u>	_	2.2	<u>-</u>	_	3.83	4	3.3	3.6	4	3.3
Pot Cap-1 Maneuver	815	_	_	1077	_	-	148	137	757	140	132	627
Stage 1	-	<u>-</u>	_	-	<u>-</u>	_	552	535	-	387	363	-
Stage 2	_			_	_	_	555	359	_	754	515	_
Platoon blocked, %		_			<u> </u>	_	000	000		707	010	
Mov Cap-1 Maneuver	814	_	_	1076	_	_	129	123	756	117	119	626
Mov Cap-2 Maneuver	-	_	_	-	_	_	284	226	-	258	225	-
Stage 1		_		_		_	531	515	_	372	339	_
Stage 2	_	_	_	_	_	_	491	335	<u>-</u>	659	495	_
010g0 Z							101	300		500	100	
				14.5			l I D			0.5		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.5			0.7			16.2			11.1		
HCM LOS							С			В		
Minor Lane/Major Mvmt	t	NBLn1 I	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1		
Capacity (veh/h)		284	756	814	-	_	1076	-	-	626		
HCM Lane V/C Ratio			0.092		_	_	0.066	_	_	0.053		
HCM Control Delay (s)		22	10.2	9.6	-	-	8.6	-	-			
HCM Lane LOS		C	В	A	_	-	A	-	_	В		
HCM 95th %tile Q(veh)		1	0.3	0.1	_	-	0.2	_	-	0.2		

	۶	-	•	•	←	•	4	†	/	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† Ъ		*	↑ ₽			4			4	
Traffic Volume (vph)	8	370	56	33	692	22	78	6	25	6	2	12
Future Volume (vph)	8	370	56	33	692	22	78	6	25	6	2	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	12	12	14	12
Storage Length (ft)	150		0	100		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	60			50			25			25		
Right Turn on Red			Yes			Yes			Yes	_,		Yes
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		1148			648			819			1228	
Travel Time (s)		17.4			9.8			16.0			23.9	
Confl. Peds. (#/hr)	1				0.0	1		10.0	1	1	20.0	
Confl. Bikes (#/hr)	•		1						•	•		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	5%	4%	12%	3%	10%	10%	0.30	12%	0%	0.30	0%
Shared Lane Traffic (%)	0 70	3 /0	770	12/0	370	10 /0	10 /0	0 70	12/0	0 70	0 70	0 70
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2		1 Cilli	4		1 Cilli	8	
Permitted Phases	ı	U		J			4			8	U	
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase	ı	U		J			7	4		U	U	
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	89.0		15.0	89.0		56.0	56.0		56.0	56.0	
Total Split (%)	9.4%	55.6%		9.4%	55.6%		35.0%	35.0%		35.0%	35.0%	
Maximum Green (s)	8.9	82.6		9.4 //	82.6		49.9	49.9		50.1	50.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
. ,	0.0	0.0		0.0	0.0		2.0	0.0		2.9	0.0	
Lost Time Adjust (s) Total Lost Time (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Lead/Lag	Lead			Lead				0.1			5.9	
Lead-Lag Optimize?	Yes	Lag Yes		Yes	Lag Yes							
Vehicle Extension (s)	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.2	20.0		0.2	20.0		0.2	0.2		0.2	0.2	
Time To Reduce (s)	0.0	15.0		0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)	INOILE	7.0		NONE	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		18.0			18.0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)		0			0.0		0.0	0.0		0	0	
Act Effct Green (s)	6.4	116.3		9.1	126.2		U	18.5		U	18.7	
Actuated g/C Ratio	0.04	0.73		0.06	0.79			0.12			0.12	
v/c Ratio	0.13	0.19		0.41	0.79			0.73			0.12	
Control Delay	69.4	9.3		85.0	5.9			85.2			35.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
•	69.4	9.3		85.0	5.9			85.2			35.0	
Total Delay LOS	69.4 E											
	E	A 10.4		F	A 9.4			95.2			25.0	
Approach Delay		10.4			9.4			85.2			35.0	

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

	۶	→	\rightarrow	•	←	•	•	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ î≽		ሻ	∱ ∱			4			4	
Traffic Volume (veh/h)	8	370	56	33	692	22	78	6	25	6	2	12
Future Volume (veh/h)	8	370	56	33	692	22	78	6	25	6	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1722	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	9	411	62	37	769	24	87	7	28	7	2	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	0	5	5	12	3	3	0	0	0	0	0	0
Cap, veh/h	19	2299	344	46	2718	85	145	9	34	68	29	98
Arrive On Green	0.02	1.00	1.00	0.03	0.78	0.78	0.09	0.09	0.09	0.09	0.09	0.09
Sat Flow, veh/h	1810	3016	451	1640	3490	109	1126	93	363	406	311	1037
Grp Volume(v), veh/h	9	235	238	37	388	405	122	0	0	22	0	0
Grp Sat Flow(s),veh/h/ln	1810	1735	1733	1640	1763	1836	1581	0	0	1755	0	0
Q Serve(g_s), s	0.8	0.0	0.0	3.6	10.0	10.0	10.2	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.8	0.0	0.0	3.6	10.0	10.0	12.0	0.0	0.0	1.8	0.0	0.0
Prop In Lane	1.00	0.0	0.26	1.00		0.06	0.71	0.0	0.23	0.32	0.0	0.59
Lane Grp Cap(c), veh/h	19	1322	1321	46	1373	1430	188	0	0	196	0	0
V/C Ratio(X)	0.48	0.18	0.18	0.80	0.28	0.28	0.65	0.00	0.00	0.11	0.00	0.00
Avail Cap(c_a), veh/h	101	1322	1321	93	1373	1430	522	0	0	548	0	0.00
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	77.9	0.0	0.0	77.3	5.0	5.0	70.9	0.0	0.0	66.4	0.0	0.0
Incr Delay (d2), s/veh	18.1	0.3	0.3	25.9	0.5	0.5	3.7	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.1	0.1	1.8	3.3	3.4	5.1	0.0	0.0	0.8	0.0	0.0
Unsig. Movement Delay, s/veh		0.1	V. 1	1.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh	96.0	0.3	0.3	103.2	5.5	5.5	74.6	0.0	0.0	66.7	0.0	0.0
LnGrp LOS	F	A	A	F	A	A	Ε	A	A	E	A	A
Approach Vol, veh/h		482	, <u>, , , , , , , , , , , , , , , , , , </u>	•	830			122	,,	<u> </u>	22	
Approach Delay, s/veh		2.1			9.9			74.6			66.7	
Approach LOS		A			3.3 A			74.0 E			60.7 E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.7	131.0		21.2	10.4	128.4		21.2				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 83		49.9	* 9.1	* 83		* 50				
Max Q Clear Time (g_c+I1), s	2.8	12.0		14.0	5.6	2.0		3.8				
Green Ext Time (p_c), s	0.0	11.9		0.7	0.0	6.1		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			13.6									
HCM 6th LOS			В									
Notos												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.


Lanes, Volumes, Timings 1: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	۶	→	•	•	←	•	4	†	<i>></i>	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	↑ ↑		ች	^	7		4		ች	₽	
Traffic Volume (vph)	142	1145	41	55	723	81	51	29	58	89	35	98
Future Volume (vph)	142	1145	41	55	723	81	51	29	58	89	35	98
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	10	10	10
Storage Length (ft)	125		0	115		0	0		0	0		0
Storage Lanes	1		0	1		1	0		0	1		0
Taper Length (ft)	55			65			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		1049			415			1011			510	
Travel Time (s)		15.9			6.3			23.0			11.6	
Confl. Peds. (#/hr)									1	1		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	0%	3%	0%	0%	3%	2%	0%	0%	4%	1%	0%	0%
Shared Lane Traffic (%)												
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	16.0	94.0		15.0	93.0	93.0	36.0	36.0		15.0	51.0	
Total Split (%)	10.0%	58.8%		9.4%	58.1%	58.1%	22.5%	22.5%		9.4%	31.9%	
Maximum Green (s)	9.8	87.9		9.7	86.9	86.9	29.5	29.5		8.9	44.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	110.5	102.4		104.8	96.8	96.8		19.8		35.1	34.7	
Actuated g/C Ratio	0.69	0.64		0.66	0.60	0.60		0.12		0.22	0.22	
v/c Ratio	0.33	0.57		0.22	0.37	0.09		0.76		0.42	0.35	
Control Delay	10.5	19.0		9.0	14.0	0.9		81.8		56.1	22.9	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	10.5	19.0		9.0	14.0	0.9		81.8		56.1	22.9	
LOS	В	В		Α	В	Α		F		Е	С	
Approach Delay		18.1			12.5			81.8			36.2	
Approach LOS		В			В			F			D	

Synchro 10 Report Page 1 Baseline

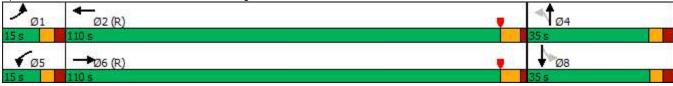
Intersection Summa	ry	
Area Type:	Other	
Cycle Length: 160		
Actuated Cycle Leng	gth: 160	
Offset: 102.9 (64%),	Referenced to phase	/BTL and 6:EBTL, Start of Yellow
Natural Cycle: 95		
Control Type: Actua	ted-Coordinated	
Maximum v/c Ratio:	0.76	
Intersection Signal D	Delay: 21.2	Intersection LOS: C
Intersection Capacit		ICU Level of Service D
Analysis Period (mir	n) 15	

Splits and Phases: 1: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	•	→	•	•	•	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		ሻ	^	7		4		ሻ	₽	
Traffic Volume (veh/h)	142	1145	41	55	723	81	51	29	58	89	35	98
Future Volume (veh/h)	142	1145	41	55	723	81	51	29	58	89	35	98
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1856	1856	1900	1856	1870	1900	1900	1900	1885	1900	1900
Adj Flow Rate, veh/h	153	1231	44	59	777	87	55	31	62	96	38	105
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	3	3	0	3	2	0	0	0	1	0	0
Cap, veh/h	535	2263	81	300	2226	1001	87	45	73	254	92	255
Arrive On Green	0.04	0.65	0.65	0.06	1.00	1.00	0.11	0.11	0.11	0.06	0.21	0.21
Sat Flow, veh/h	1810	3472	124	1810	3526	1585	496	394	642	1795	445	1231
Grp Volume(v), veh/h	153	625	650	59	777	87	148	0	0	96	0	143
Grp Sat Flow(s),veh/h/ln	1810	1763	1833	1810	1763	1585	1532	0	0	1795	0	1676
Q Serve(g_s), s	4.8	30.6	30.6	1.8	0.0	0.0	13.1	0.0	0.0	7.4	0.0	11.8
Cycle Q Clear(g_c), s	4.8	30.6	30.6	1.8	0.0	0.0	15.1	0.0	0.0	7.4	0.0	11.8
Prop In Lane	1.00	00.0	0.07	1.00	0.0	1.00	0.37	0.0	0.42	1.00	0.0	0.73
Lane Grp Cap(c), veh/h	535	1149	1195	300	2226	1001	205	0	0.12	254	0	348
V/C Ratio(X)	0.29	0.54	0.54	0.20	0.35	0.09	0.72	0.00	0.00	0.38	0.00	0.41
Avail Cap(c_a), veh/h	566	1149	1195	358	2226	1001	311	0.00	0.00	254	0.00	466
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	9.2	15.0	15.0	11.9	0.0	0.0	69.4	0.0	0.0	56.6	0.0	54.9
Incr Delay (d2), s/veh	0.3	1.9	1.8	0.3	0.4	0.2	4.7	0.0	0.0	0.9	0.0	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	12.1	12.6	0.7	0.0	0.0	6.2	0.0	0.0	3.5	0.0	5.1
Unsig. Movement Delay, s/veh		12.1	12.0	0.1	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.1
LnGrp Delay(d),s/veh	9.5	16.9	16.8	12.2	0.4	0.2	74.1	0.0	0.0	57.5	0.0	55.7
LnGrp LOS	3.5 A	В	В	В	Α	Α	74.1 E	Α	Α	57.5 E	Α	55.7 E
Approach Vol, veh/h		1428	<u> </u>	ט	923		<u> </u>	148		<u> </u>	239	
		16.1			1.2			74.1			56.4	
Approach LOS												
Approach LOS		В			Α			Е			Е	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.2	107.1		39.7	9.9	110.4	15.0	24.7				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 9.8	86.9		44.5	* 9.7	87.9	8.9	29.5				
Max Q Clear Time (g_c+I1), s	6.8	2.0		13.8	3.8	32.6	9.4	17.1				
Green Ext Time (p_c), s	0.1	14.0		0.9	0.0	24.4	0.0	0.6				
Intersection Summary												
HCM 6th Ctrl Delay			17.7									
HCM 6th LOS			В									
Notes												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	•	•	—	4	1	†	/	/	+	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	∱ }		ň	^	7		ર્ન	7		f)	
Traffic Volume (vph)	29	1188	89	76	757	42	75	1	70	31	0	41
Future Volume (vph)	29	1188	89	76	757	42	75	1	70	31	0	41
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	100		100	0		25	0		0
Storage Lanes	1		0	1		1	0		1	0		0
Taper Length (ft)	25			25			25			25		
Link Speed (mph)		45			45			30			30	
Link Distance (ft)		415			1148			1035			349	
Travel Time (s)		6.3			17.4			23.5			7.9	
Confl. Peds. (#/hr)			2	2								
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	4%	3%	0%	0%	3%	7%	0%	0%	0%	0%	0%	10%
Shared Lane Traffic (%)												
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized	t											
Intersection Capacity Utiliz	ation 60.8%			IC	U Level	of Service	В					
Analysis Period (min) 15												


Synchro 10 Report Page 4 Baseline

Intersection													
Int Delay, s/veh	3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		† ‡		ሻ	^	7		स	7		f		
Traffic Vol, veh/h	29	1188	89	76	757	42	75	1	70	31	0	41	
Future Vol, veh/h	29	1188	89	76	757	42	75	1	70	31	0	41	
Conflicting Peds, #/hr	0	0	2	2	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	100	-	100	-	-	25	-	-	-	
/eh in Median Storage,	,# -	0	-	-	0	-	-	1	-	-	1	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	4	3	0	0	3	7	0	0	0	0	0	10	
Nvmt Flow	30	1238	93	79	789	44	78	1	73	32	0	43	
Major/Minor N	/lajor1		ı	Major2		_	Minor1		_	Minor2			
Conflicting Flow All	833	0	0	1333	0	0	1900	2338	668	1627	2340	395	
Stage 1	-	-	-	1000	-	-	1347	1347	-	947	947	-	
Stage 2	_	_	_	<u>-</u>	_	_	553	991	_	680	1393	_	
Critical Hdwy	4.18	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	7.1	
Critical Hdwy Stg 1	7.10	_	_	7.1	_	<u>-</u>	5.5	5.5	-	5.5	5.5	- '.'	
ritical Hdwy Stg 2	_	_	_	_	_	_	5.5	5.5	-	5.5	5.5	_	
follow-up Hdwy	2.24	_	_	2.2	_	<u>-</u>	3.5	4	3.3	3.5	4	3.4	
ot Cap-1 Maneuver	783	_	_	524	_	_	~ 43	37	405	69	37	582	
Stage 1	-	_	_	- 02-	_	_	236	222	-	370	342	-	
Stage 2	_	_	_	_	_	_	571	327	-	497	211	_	
Platoon blocked, %		_	_		_	_	071	UZI		701	211		
Mov Cap-1 Maneuver	783	_	_	523	_	-	~ 34	30	404	48	30	582	
Mov Cap-2 Maneuver	-	_	_	-	_	_	148	118	-	173	90	-	
Stage 1	_	-	-	_	_	_	227	213	_	356	290	-	
Stage 2	_	_	_	_	_	_	449	278	_	390	203	_	
								J		300	_00		
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.2			1.1			35.9			11.7			
HCM LOS	0.2			1.1			55.5 E			В			
TOW LOO										U			
Minor Lang/Major Mund		MDI 511	VIDI ~2	EDI	EDT	EDD	WDI	WDT	WDD	CDI ~1			
Minor Lane/Major Mvmt		NBLn11 148		EBL	EBT	EBR -	WBL 523	WBT -	WBR S				
Capacity (veh/h) HCM Lane V/C Ratio		0.535	404	783 0.039	-		0.151		-	582 0.073			
		54.3	15.9	9.8	-		13.1	-	-	11.7			
HCM Lang LOS			15.9 C		-	-		-		11.7 B			
HCM Lane LOS HCM 95th %tile Q(veh)		F 2.6	0.7	0.1	-	-	0.5	-	-	0.2			
· ´		2.0	0.7	U. I	_	-	0.5	-	-	0.2			
Notes													
~: Volume exceeds cap	acity	\$: De	lay exc	eeds 30)0s	+: Comp	outation	Not De	efined	*: All	major v	olume ir	n platoon

	•	→	•	€	+	•	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	↑ ↑			4			4	
Traffic Volume (vph)	8	1025	205	52	688	6	137	1	75	28	10	7
Future Volume (vph)	8	1025	205	52	688	6	137	1	75	28	10	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	12	12	14	12
Storage Length (ft)	150	· <u>-</u>	0	100	· -	0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	60			50			25			25		
Right Turn on Red	00		Yes	00		Yes			Yes			Yes
Link Speed (mph)		45			45	. 00		35			35	. 00
Link Distance (ft)		1148			648			819			1228	
Travel Time (s)		17.4			9.8			16.0			23.9	
Confl. Peds. (#/hr)			2	2	0.0			10.0			20.0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	20%	3%	1%	10%	3%	0%	3%	0%	13%	7%	0%	0.30
Shared Lane Traffic (%)	20 /0	370	1 /0	10 70	370	0 70	370	0 70	1070	1 70	0 70	0 70
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2		1 Cilli	4		1 Cilli	8	
Permitted Phases	1	U		3	L		4	7		8	U	
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase		U		J	2		4	7		O	O	
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	110.0		15.0	110.0		35.0	35.0		35.0	35.0	
Total Split (%)	9.4%	68.8%		9.4%	68.8%		21.9%	21.9%		21.9%	21.9%	
Maximum Green (s)	8.9	103.6		9.4 /0	103.6		28.9	28.9		29.1	29.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
	0.0	0.0		0.0	0.0		2.0	0.0		2.9	0.0	
Lost Time Adjust (s) Total Lost Time (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Lead/Lag				Lead				0.1			5.9	
Lead-Lag Optimize?	Lead Yes	Lag Yes		Yes	Lag Yes							
• .	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Vehicle Extension (s) Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
	0.2	20.0		0.2	20.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0											
Time To Reduce (s)		15.0		0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None 7.0	None	
Walk Time (s)		7.0			7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		18.0 0			18.0 0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)	C F			0.0			0	0 26.4		0	0 26.6	
Act Effct Green (s)	6.5	109.1		8.6	118.2							
Actuated g/C Ratio	0.04	0.68		0.05	0.74			0.16			0.17	
v/c Ratio	0.13	0.55		0.62	0.28			0.89			0.19	
Control Delay	91.9	6.6		103.1	7.9			95.0			52.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	91.9	6.6		103.1	7.9			95.0			52.0	
LOS	F	A		F	A			F			D	
Approach Delay		7.2			14.6			95.0			52.0	
Approach LOS		Α			В			F			D	

Intersection Summary							
Area Type: Other							
Cycle Length: 160							
Actuated Cycle Length: 160							
Offset: 118.6 (74%), Referenced to phase 2:WBT a	and 6:EBT, Start of Yellow						
Natural Cycle: 80							
Control Type: Actuated-Coordinated							
Maximum v/c Ratio: 0.89							
Intersection Signal Delay: 18.9	Intersection LOS: B						
Intersection Capacity Utilization 68.3%	ICU Level of Service C						
Analysis Period (min) 15							

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

Synchro 10 Report Page 7 Baseline

	۶	→	•	•	•	•	4	†	<i>></i>	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		ሻ	∱ ĵ≽			4			4	
Traffic Volume (veh/h)	8	1025	205	52	688	6	137	1	75	28	10	7
Future Volume (veh/h)	8	1025	205	52	688	6	137	1	75	28	10	7
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1604	1856	1856	1752	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	8	1079	216	55	724	6	144	1	79	29	11	7
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	20	3	3	10	3	3	0	0	0	0	0	0
Cap, veh/h	14	2022	403	69	2585	21	194	1	86	169	63	34
Arrive On Green	0.02	1.00	1.00	0.04	0.72	0.72	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1527	2928	584	1668	3583	30	1027	7	564	868	412	224
Grp Volume(v), veh/h	8	648	647	55	356	374	224	0	0	47	0	0
Grp Sat Flow(s),veh/h/ln	1527	1763	1749	1668	1763	1850	1598	0	0	1504	0	0
Q Serve(g_s), s	0.8	0.0	0.0	5.2	11.3	11.3	17.9	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.8	0.0	0.0	5.2	11.3	11.3	22.0	0.0	0.0	4.1	0.0	0.0
Prop In Lane	1.00		0.33	1.00		0.02	0.64		0.35	0.62		0.15
Lane Grp Cap(c), veh/h	14	1217	1208	69	1272	1335	281	0	0	266	0	0
V/C Ratio(X)	0.56	0.53	0.54	0.80	0.28	0.28	0.80	0.00	0.00	0.18	0.00	0.00
Avail Cap(c_a), veh/h	85	1217	1208	95	1272	1335	324	0	0	311	0	0
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	78.2	0.0	0.0	76.0	7.8	7.8	66.4	0.0	0.0	59.0	0.0	0.0
Incr Delay (d2), s/veh	30.1	1.7	1.7	27.0	0.5	0.5	11.4	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.6	0.6	2.7	4.1	4.3	9.9	0.0	0.0	1.7	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	108.3	1.7	1.7	103.1	8.3	8.3	77.8	0.0	0.0	59.3	0.0	0.0
LnGrp LOS	F	Α	Α	F	А	А	E	Α	Α	E	Α	А
Approach Vol, veh/h		1303			785			224		_	47	
Approach Delay, s/veh		2.3			15.0			77.8			59.3	
Approach LOS		Α.			В			F E			E	
	4					^						
Timer - Assigned Phs	7.6	101.0		20.6	5	110.0		8				
Phs Duration (G+Y+Rc), s	7.6	121.8		30.6	12.5	116.9		30.6				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 1E2		28.9	* 9.1	* 1E2		* 29				
Max Q Clear Time (g_c+I1), s	2.8	13.3		24.0	7.2	2.0		6.1				
Green Ext Time (p_c), s	0.0	10.6		0.5	0.0	30.5		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			14.8									
HCM 6th LOS			В									
Marka												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Public Participation Plan Report Project Name:

Contact Name: Jennifer Santelli

Meeting Date: Tuesday, May 5th

Meeting Location: 4435 Hugh Howell Road, Tucker GA 30084

Meeting Start Time: 5:00 pm Meeting End Time: 7:00 pm

Number of people in attendance: 28

Date of Filing of Land Use Petition Application: 08/13/2021

General Introduction: please include information about who you reached out to for the meeting, communication outreach methods (letters, facebook, emails, etc), what you were proposing at the time of the neighborhood meeting, the meeting format (ppt, q&a, display boards, etc), and who attended the meeting on behalf of the applicant (engineers, attorney, developer, property owner, etc). Additional information that you feel is important to include is welcomed.

Summary of concerns and issues raised at the meeting: (please list and respond to each one individually; include as many items that were discussed).

- List question/concern/comment/request for changes to the proposed plans
 Applicant Response:
- List question/concern/comment/request for changes to the proposed plans
 Applicant Response:

The following must be submitted at time of application submittal:

Copy of the letter that was mailed to neighbors

RECEIVEDCopy of address list for mailing City of Tucker

AUG 09 2021

Community Development
Department

Page 166 of 197

Department \UP-21-0004,CV-21-0003,CV-21-0000,CV-21-0004

GENERAL INTRODUCTION

RECEIVED City of Tucker

AUG 09 2021

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 bowmanconsulting.com

Community Development

Department Page 167 of 197

SLUP-21-0004, CV-21-0002, CV-21-0003, CV-21-0004

Public Participation Meeting

Chick-fil-A Tucker 4435 Hugh Howell Road May 25, 2021

General Introduction

A Public Participation Meeting was held on Tuesday, May 25th at 5:00 PM at the project site at 4435 Hugh Howell Road Tucker, GA 30084. Fifty letters advertising meeting were sent out to nearby residences and businesses. This mailing list was provided by the City of Tucker and invited attendance to learn about the project and to ask questions, raise concerns, and provide feedback. Additional attendees were notified via City advertising and word of mouth.

The neighbours were informed that Bowman is working with Chick-fil-A to construct a new ±4,978 square foot restaurant with a drive-through at a new location at 4435Hugh Howell Road, at the southwest corner of Hugh Howell Road and Rosser Terrace on the site of a former restaurant. Bowman informed attendees that the public participation meeting is required by City of Tucker for a application of a Special Land Use Permit to allow operation of a drive-through restaurant in the DT-2 (Downtown Corridor) zoning district.

Site layout and architectural information was displayed on poster boards and detailed building materials, finishes and elevations. Attendees received individual copies of the site layout upon entry to the meeting.

Attendees included the Chick-fil-A development manager, Jennifer Santelli, and the operator of the existing Chick-fil-A, Brad Spratte, as well as several other existing restaurant staff. Current property owner, John Poulakis, was in attendance, as well as Bridgette Ganter and Collin McCarty of Bowman, as consulting engineers for Chick-fil-A. Remaining attendees represented nearby residences, businesses, and the City of Tucker.

Summary of Concerns and Issues

The main concern is traffic in the area:

- 1. Residents living along Rosser Terrace have issues cut-through traffic from Tucker Industrial Road to Hugh Howell Road as a quicker route to U.S. Highway 78, as this bypasses the traffic signal at Tucker Industrial Road and Hugh Howell Road.
 - <u>Applicant Response:</u> Chick-fil-A cannot prevent this type of pass-through traffic, but offered to speak with DeKalb County in support for previously discussed appropriate measures to control this traffic, including speed-calming devices.
- 2. Another concern is that the traffic queue to turn onto Hugh Howell Road from Rosser Terrace would increase with the introduction of a Chick-fil-A at this intersection.

RECEIVED
City of Tucker

AUG 09 2021

950 North Point Parkway, Suite 200, Alpharetta, GA 30005

bowmanconsulting.com

<u>Applicant Response:</u> Chick-fil-A is completing a Traffic Impact Study to assess existing traffic and new traffic resulting from the addition of a Chick-fil-A restaurant, as well as offer suggestions for mitigation.

Traffic Impact Study was completed on June 25th. Study recommends addition of dedicated right turn lane from northbound Rosser Terrace on to eastbound Hugh Howell Road. Conditions did not warrant a new traffic signal at the intersection of Hugh Howell Road and Rosser Terrance.

The overall intersection of Hugh Howell Road and Rosser Terrace is expected to experience an overall LOS A with the addition of a dedicated right turn lane, with an overall increase in delay of 1.7 seconds during the morning peak hour and an overall increase of 2.4 seconds in the evening peak hour.

For the morning peak hour, all approaches are expected to maintain acceptable LOS with minimal increases in overall delay.

During the evening peak hour, the northbound approach to Hugh Howell Road along Rosser Terrace is expected to operate at LOS E, with an increase in delay of 10.6 second, which is typical of unsignalized approaches connecting to a major road such as Hugh Howell Road.

3. Lastly, there is a concern that the proposed Chick-fil-A drive-through facility will back up onto Rosser Terrace.

<u>Applicant Response</u>: Chick-fil-A has conducted extensive research and in recent years has implemented a series of techniques designed to serve drive-through customers at an efficient rate (average 45 seconds per vehicle, 80 orders per hour). These improvements include optimized kitchen operations and floorplan, as well as the isolated dual drive-through design to increase the number of vehicles that may be contained in the drive-through. In addition, Chick-fil-A has introduced face-to-face ordering with multiple contact points, as well as online ordering. Likewise, order pick up is no longer sequential, will multiple orders being delivered to vehicles simultaneously.

RECEIVED
City of Tucker

AUG 09 2021

LETTER MAILED TO NEIGHBORS

RECEIVED
City of Tucker

AUG 09 2021

Community Development
Department

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 **bowmanconsulting.com**

Page 170 of 197

Bowman 950 North Point Pkwy, Suite 200 Alpharetta, GA 30005

May 5, 2021

RE: Chick-fil-A 4435 Hugh Howell Road, Tucker, GA 30084

Neighbors of 4435 Hugh Howell Road,

We invite you to attend a Public Participation Meeting to learn about a proposed Chick-fil-A restaurant at this address. Bowman is working with Chick-fil-A to construct a new 4,978± square foot restaurant with a drive-through at 4435 Hugh Howell Road.

This address is zoned DT-2, Downtown Corrldor. The City of Tucker requires a Special Land Use Permit for drive-through facilities in this zoning district. In advance of application of this permit, Bowman is holding a Public Participation Meeting to invite all neighbors to learn more about this project.

This restaurant will feature Chick-fil-A's new dual drive-through lane design and enhanced operations to serve guests as safely and efficiently as possible. We sincerely hope you will take advantage of this opportunity to meet with us and allow us to answer any questions you may have.

Date: Tuesday, May 25th

Time: 5:00 PM

Place: 4435 Hugh Howell Road, Tucker, GA 30084

Sincerely,

Bridgette Ganter

bganter@bowman.com

Bridgette Santon

678-606-5278

Bowman

RECEIVED
City of Tucker

AUG 09 2021

ADDRESS LIST

RECEIVED
City of Tucker

AUG 09 2021

Community Development Department

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 **bowmanconsulting.com**

Page 172 of 197

SLUP-21-0004, CV-21-0002, CV-21-0003, CV-21-0004

RECEIVED City of Tucker	AUG 09 2021	Community Development Department
	,	0

Address	Owner	2nd Owner
2223 Dillard Street Tucker, GA 30084	SANTIAGO JOHN	
4445 Hugh Howell Road Tucker, GA 30084	SIEG RODNEY	
4437 Cowan Road Tucker, GA 30084	ENZOS PIZZA LLC	
2211 Rosser Terrace Tucker, GA 30084	SIEG RODNEY G	
2209 Dillard Street Tucker, GA 30084	HULTQUIST MARCY A	
2206 Rosser Terrace Tucker, GA 30084	YOUNG RONALD G	YOUNG CHARLES STEVE
4410 Hugh Howell Road Tucker, GA 30084	FOWLER ENTERPRISES ATLANTA LLC	
2239 Dillard Street Tucker, GA 30084	NELSON SCOTT L	NELSON WANDA H
4473 Hugh Howell Road Tucker, GA 30084	SIEG RODNEY G	SIEG PAMELA K
2218 Dillard Street Tucker, GA 30084	MARTIN DAVID ANDREW	MARTIN WAYNE D
4412 Hugh Howell Road Tucker, GA 30084	PAPA JOHNS USA INC	
4419 Cowan Road Tucker, GA 30084	E COWAN PROPERTIES LLC	
4421 Hugh Howell Road Tucker, GA 30084	AVATAR REAL ESTATE IV LLC	
4450 Hugh Howell Road Tucker, GA 30084	JHJ TUCKER 70 LLC	
2233 Dillard Street Tucker, GA 30084	SHAMBLIN LARRY	SHAMBLIN BETTY H
4465 Hugh Howell Road Tucker, GA 30084	LUNSFORD RONALD C	
4409 Hugh Howell Road Tucker, GA 30084	OCONEE PROPERTY HOLDINGS LLC	
2190 Rosser Terrace Tucker, GA 30084	WOOD ANDREW D	
2209 Hanfred Lane REAR Tucker, GA 30084	WELCH NED R	JONES MARK
2204 Dillard Street Tucker, GA 30084	SALAZAR JESSICA LORENA	
2191 Dillard Street Tucker, GA 30084	JONES FREDRICK B	JONES MAXINE W
2214 Rosser Terrace Tucker, GA 30084	WEBER DOROTHY V	
2209 Hanfred Lane Tucker, GA 30084	WELCH NED R	JONES MARK
4351 Hugh Howell Road Tucker, GA 30084	TUCKER PLAZA PARTNERS	
2175 Dillard Street Tucker, GA 30084	HARRELSON DAVID EARL	
2214 Dillard Street Tucker, GA 30084	DODSON HECK	
4435 Hugh Howell Road Tucker, GA 30084	COSTOPOULOS MARIA	POULAKIS JOHN
4405 Cowan Road Tucker, GA 30084	FRANKLIN STEVE	BENTZ STEVE
2217 Dillard Street Tucker, GA 30084	SHAKIR SHAKIR R	
2203 Rosser Terrace Tucker, GA 30084	TINKLE VIRGINIA	
2226 Dillard Street Tucker, GA 30084	MARTIN STEPHEN F	
2203 Dillard Street Tucker, GA 30084	ANDERSON JOHN	ANDERSON ALESIA
2191 Rosser Terrace Tucker, GA 30084	SLEG RODNEY G	

RECEIVED	City of Tucker

Mailing Adress	City State	te Zip
PO BOX 420195	ATLANTA GA	30342
1639 HUDSON RD	DECATUR GA	30033
930 GREENWOOD AVE # 12	ATLANTA GA	30306
2158 TUCKER INDUSTRIAL RD	TUCKER GA	30084
2209 DILLARD ST	TUCKER GA	30084
2206 ROSSER TER	TUCKER GA	30084
221 DEER COLONY LN	PONTE VEC FL	30282
4874 FIVE FORKS TRICKUM RD SW	LILBURN GA	30047
1639 HUDSON RD	DECATUR GA	30033
2218 DILLARD ST	TUCKER GA	30084
PO BOX 99900	LOUISVILLE KY	40269
93664 P.O. BOX 93664 PMB 93664	ATLANTA GA	30377
P O BOX 13585	ATLANTA GA	30324
1000 PEACHTREE INDUSTRIAL BLVD STE 6 308	SUWANEE GA	30024
3595 CARRICK CT	SNELLVILLE GA	30039
4465 HUGH HOWELL RD	TUCKER GA	30084
1040 FOUNDERS BLVD # 100	ATHENS GA	30908
2190 ROSSER TER	TUCKER GA	30084
134 N HILL ST STE 300	GRIFFIN GA	30223
2200 DILLARD ST	TUCKER GA	30084
1331 GREENDRIDGE TRL	LITHONIA GA	30058
2214 ROSSER TER	TUCKER GA	30084
134 N HILL ST STE 300	GRIFFIN GA	30223
2881 WALLACE RD	BUFORD GA	30519
2175 DILLARD ST	TUCKER GA	30084
PO BOX 1006	LITHONIA GA	30058
1610 DEKALB AVE	ATLANTA GA	30307
3691 TOXAWAY CT	CHAMBLEE GA	30341
2217 DILLARD ST	TUCKER GA	30084
2203 ROSSER TER	TUCKER GA	30084
144 PONCE DE LEON AVE NE APT 1103	ATLANTA GA	30308
2203 DILLARD ST	TUCKER GA	30084
1639 HUDSON RD	DECATUR GA	30033

2200 DILLARD ST	TUCKER	GA	30084
2200 ROSSER TER	TUCKER	GA	30084
200 S BISCAYNE BLVD FLOOR 6TH	MIAMI	FL	33131
2213 DILLARD ST	TUCKER	GA	30084
15 LAURA LN STE 300	THOMASVI NC	NC	27360
4500 HUGH HOWELL RD STE 780	TUCKER	GA	30084
4173 BENT WILLOW DR SW	LILBURN GA	GA	30047
2177 ROSSER TER	TUCKER	GA	30084
144 PONCE DE LEON AVE NE APT 1103	ATLANTA GA	GA	30308
PO BOX 9271	OAK BROO IL	1	60522
6555 SUGARLOAF PKWY STE 307 197	DULUTH GA	GA	30097
2227 DILLARD ST	TUCKER GA	GA	30084
9219 KATY FREEWAY STE 193	HOUSTON TX	X	77024
201 ALLEN RD 300	ATLANTA	GA	30328
2182 ROSSER TER	TUCKER	GA	30084
PO BOX 1006	LITHONIA	GA	30058
303 SOMERSET CT	LAWRENCE GA	: GA	30044

Page	175	οf	197
IUSC	1/3	Οı	1)

RECEIVED
City of Tucker

Email	vtinkle@gmail.com	sgpeterman@yahoo.com	awood1014@gmail.com	kf4rh@yahoo.com	alw62000@gmail.com	ericandlindseysmith@gmail.com	annapasch@gmail.com	heatherann143@gmail.com	Avil@avatarrealestatellc.com	enginesystems1@gmail.com
Name	Virginia Tinkle	Suzanne Peterman	Andy Wood	Louis Wood	Allison White	Eric&Lindsey Smith	Anna Pasch	Heather Carlyle	Avil Vaswani	Ted Fischin

Email List

kristen.hunsicker@gmail.com rfjenkins42@gmail.com

micheljiminez19@aol.com

Michel Jimenez Kristen Jenkins Robert Jenkins

RECEIVED City of Tucker	AUG 09 2021	Community Developmen
----------------------------	-------------	----------------------

MCDANIELS CYNTHIA ANN	NEEM CING					HUGH HOWELL LLC					CROSS KAREN S		
SALAZAR JESSICA LORENA PHILLIPS JOHN ANTHONY	MUNG KHAM DO	HERITAGE PLACE LLC	W H J PROPERTIES LLC	BARRERA JUAN R AVILES	MARTIN STEPHEN F	INLAND AMERICAN TUCKER	4383 HANFRED LANE LLC	PASCH ANNA	LSP TUCKER LLC	WENDYS TUCKER FS LLC	CROSS AUDREY THEO	DODSON HECK	TOMANELLI LLC
2200 Dillard Street Tucker, GA 30084 2200 Rosser Terrace Tucker, GA 30084 4434 Hilph Howell Road Tlicker, GA 30084	2213 Dillard Street Tucker, GA 30084 4487 Hugh Howell Road Tucker. GA 30084	4500 Hugh Howell Road Tucker, GA 30084	2199 Dillard Street Tucker, GA 30084	2177 Rosser Terrace Tucker, GA 30084	2222 Dillard Street Tucker, GA 30084	4416 Hugh Howell Road Tucker, GA 30084	4383 Hanfred Lane Tucker, GA 30084	2227 Dillard Street Tucker, GA 30084	4403 Hugh Howell Road Tucker, GA 30084	4453 Hugh Howell Road Tucker, GA 30084	2182 Rosser Terrace Tucker, GA 30084	2210 Dillard Street Tucker, GA 30084	2245 Dillard Street Tucker, GA 30084

MEETING MINUTES

RECEIVED
City of Tucker

AUG 09 2021

Community Development Department

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 **bowmanconsulting.com**

Page 178 of 197

SLUP-21-0004, CV-21-0002/CV-21-0003/CV-21-0004

Bowman Consulting 950 North Point Pkwy, Suite 200 Alpharetta, GA 30005

May 25, 2021

Special Land Use Permit Public Hearing Notes

Summary of Main Concerns

- 1. Traffic through Rosser Terrace is already bad from people using it as a cut through to US Hwy 78.
- 2. Concerns were raised about the left turn onto Hugh Howell Road if there is not some kind of traffic signal there. It is already difficult to make that left from Rosser Terrace onto Hugh Howell Road.
- 3. Trash along Rosser Terrace is already an issue, some think it could get worse.

General Notes/Concerns:

- 1. Concern: the drive through will back up onto Rosser Terrace.
 Response: Chick-fil-A has been making improvements not only on the outside, but also within their kitchens to improve efficiency. Kitchen changes along with the site layout would guarantee that a back-up would not incur. The drive through stack is also set to be 44 cars at peak hours, which is more than enough car stacking for a busy Saturday.
- Concern: Once the drivers leave the site, it was brought up that a backup on Rosser Terrace might happen because of turning onto Hugh Howell Road.
 Response: Traffic study is currently being analyzed and will consider traffic on Rosser Terrace and Hugh Howell Road.
- 3. Concern: Cut through traffic on Rosser Terrace is bad, people speed through and there are children that like to ride bikes on that road.
 - Response: This kind of problem will be addressed to the City.
- 4. Concern: There has been talks of adding speed bumps to Rosser Terrace. Based on the Chick-fil-A site design the entrance to the site would be right on one of the speed bumps.
 Response: The additions of speed bumps were not something that was brought to our attention, will coordinate with the City to learn more about if and where there will be placed.
- 5. Concern: On the conceptual site, there is only one entrance and exit onto Rosser Terrace, many wondered why there could not be a curb cut along Hugh Howell Road.

 Response: Based on the City of Tucker requirements and comments, it was initially found that there cannot be a curb cut along Hugh Howell.
- 6. Concern: Addition of a light at Rosser Terrace and Hugh Howell Road. Response: It is to our understanding that the City would like to avoid this. The need for a light will be re-assessed after the traffic study in completed.
- 7. Concern: Que from the drive-through stack going onto Hugh Howell Road.

RECEIVED
City of Tucker

AUG 09 2021

- Response: This would be highly unlikely. The drive-through stack is already set higher than the average on a busy day (25-30 cars).
- 8. Concern: The new Publix near the site already adds traffic to the area. Concerns were raised about more traffic being added to the area.
 - Response: Although Chick-fil-A cannot help the traffic from the Publix, they can assure that the new improvements in the restaurant will help traffic in and out of the site. This is a relocation of the Chick-fil-A down the road, so the traffic that is already there will not be increased, just moved down the road.
- 9. Concern: Do not think that any kind of signage will help the traffic problem through Rosser Terrace. (No left turn signs out of the Chick-fil-A.
 - Response: Will coordinate with City to learn more about the traffic problems through Rosser Terrace.
- 10. Concern: Will any kind of traffic study be done on this site.

 Response: A Traffic Impact Study (TIS) is currently being done for the site.
- 11. Concern: Worried about if there was a car accident at the intersection of Rosser Terrace and Hugh Howell Road, that it would block off that neighborhood to their homes.

 Response: The traffic study should shed some light on this problem and will be evaluated once that

RECEIVED
City of Tucker

is completed.

AUG 09 2021

Bowman

ATTENDANCE LIST

RECEIVED
City of Tucker

AUG 09 2021

Community Development Department

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 **bowmanconsulting.com**

Page 181 of 197

Bowman

NAME	ADDRESS	EMAL
Brad Spratte		
Jacob Fair	W	ith CFA
Colin Crawford		
Lauryn Crawford		
Anna Pasch	2227 Dillard St	Annampasch@gmail.com
Lindsey Smith	2118 Rosser Ter	ericandlindseysmith@gmail.com
Eric Smith	2118 Rosser Ter	ericandlindseysmith@gmail.com
Kristen Jenkins	2134 Rosser Ter	Kristen.hunsicker@gmail.com
Robert Jenkins	2134 Rosser Ter	Rfjenkins 42@gmail.com
Lewis Wood	2174 Rosser Ter	Kf4rh@yahoo.com
Andy Wood	2190 Rosser Ter	Awood1014@gmail.com
Mandy Finch	4460 Florence St	
Adrian Finch	4460 Florence St	
Heather Carlyle	4447 Florence St	Heatherann143@gmail.com
Virginia Tinkle	2203 Rosser Ter	vtinkle@gmail.com
Raymond Maghughey	2165 Rosser Ter	
Ted Fischun	2103 Rosser Ter	Enginesystems1@gmail.com
Frank Arman	5468 Pheasant Run, Stone Mountain, GA 30087	
Allison White	4475 Florence St	Alw62000@gmail.com
Tiffany White	4475 Florence St	
Avril Vaswani	4421 Hugh Howell Rd	avril@avatarrealestatellc.com
Kimberly Harrell	5730 Musket Lane	
Michel Jimenez		micheljimenez@aol.com
Suzanne Peterman		sgpeterman@yahoo.com
John Poulakis	Building Owner	

RECEIVED
City of Tucker

AUG 09 2021

Bowman

PRESENTED SITE PLAN

RECEIVED City of Tucker

AUG 09 2021

Community Development Department

950 North Point Parkway, Suite 200, Alpharetta, GA 30005 bowmanconsulting.com

Department Page 183 of 197

SLUP-21-0004, CV-21-0002, CV-21-0003 | CV-21-0004

City of Tucker RECEIVED

AUG 09 207

Phone: (470) 206-8030 950 North Point Pkwy Os shiba Sughanetta, GA 30005 DE0B-305 (OTA) -anoda

HUGH HOWELL RD & ROSSER TERRACE CHICK-FIL-A TUCKER, HUGH HOWEL RD, GA CONCEPTUAL DESIGN

COURCES OF A DEFINE COMPANY CO

1.0 SCALE: 1" = 50" VERSION

DRAWN

SITE DATA TABLE OSED CFA AREA

PROPERTY LINE BUILDING SETBACK LINE

OVERLAY EXHIBIT

PROPOSED LEGEND PARKING COUNT Scale: 1"=50' NOT FOR CONSTRUCTION CONCEPTUAL EXHIBIT (C) TBW 000 Mal. 000 Mal. 600 Mal HICH HOURS HOURS HOW TO BE A STREET OF THE S (00 3002 to co 23. p 100) (20. EM) HOZZEH LEHHVCE 21315 \otimes FIBM 60d MAIL NORTH: 1,400,699.8: EAST: 2,284,312.34 ELEY: 1,095.84 **←#** 50' LANDSCAPE BUFFER (8) 24. N/F PROPERTY OF DOROTHY V. WEBER DEED BOOK 10483 / PAGE 285 ZONED R-75 A SECTION AND ADDRESS OF THE PARTY OF THE PA AVATAR REAL ESTATE IV, LLC
DED BOOK 2391 / PAGE 337
ZONED DT-Z 54. PROPERTY LINE AGREEMEN DB 236Q PC 571 20. LANDSCAPE BUFFER 50. BUILDING SETBACK .00.40,11,E 115 EB, Community Development NY PROPERTY OF
LARRY SHAMBLIN
BETTY H. SHAMBLIN
PER DEVALB COUNT TAX ASSESSOR
ZONED R-75 NAF PROPERTY OF SHAKIR R. SHAKIR DED BOOK 26800 / PAGE 522 ZONED R-75 N_{JF} PROPERTY OF N_{JF} SCOTT L. NEL.SON WANDAH, NELSON DEED BOOK 10474, PAGE 772 ZDVBD D=1N/F PROPERTY OF
JOHN SANTIAGO
DEED BOOK 1142 / PAGE 492
ZONGO R-75 N/F PROPERTY OF

TOMANELLI, LLC

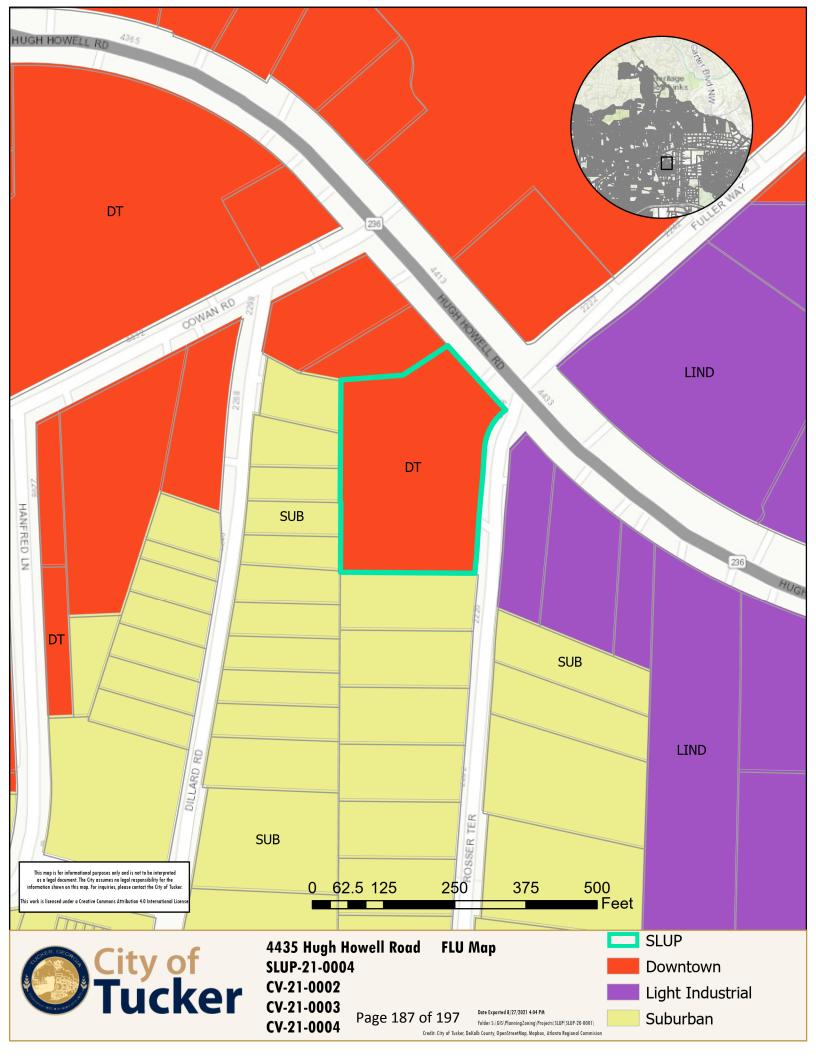
DEED BOOK 14840 / PAGE 422

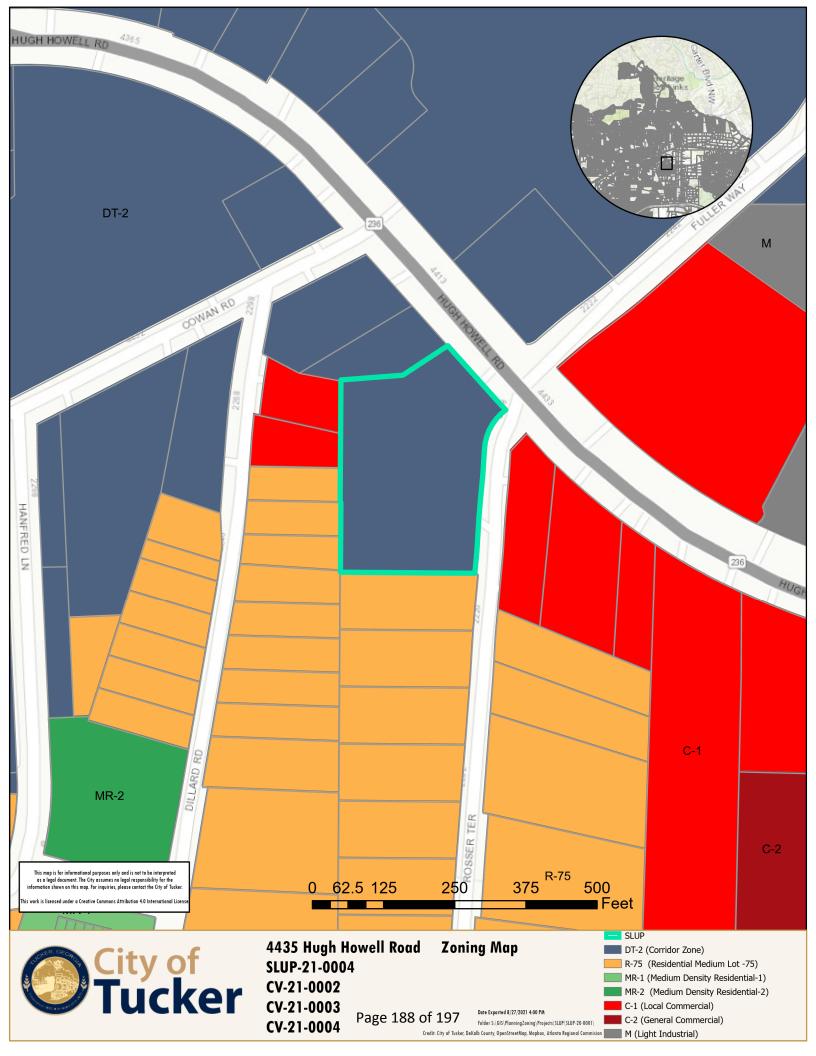
ZONED C-1 Department

Page 184 of 197

AUG 09 2021 ommunity Development Department DISCHARAGE REPLACED WAS FORM o Meeting sign-in sheet O Meeting minutes to account on the appearant on the relating that the position of the country o o Copy of the plan that was presented at the neighborhood meeting I, the undersigned, as the applicant or an authorized representative of the applicant do solemnly swear and attest that the information provided is true and accurate. I have included a complete record of the neighborhood meeting, as well as an honest response regarding the intentions for development. Signature of Applicant or Authorized Representative Jennifer Santelli Type or Print Name of Applicant or Authorized Representative EXPIRES GEORGIA APR. 18, 2023 **Notary Seal** ALB CO turn of Supplement Yorkd Dollar Phonoston and Description (1981) also Contenbury SA COLO GIAND BY THOSE The contents in a article appropriate paid distinguing to equity in accompanies to the Confession of the contents of the conte common starts and age from a common transport common contract the process of feet here. to the and a view of vivite knowledge, let couple a sixif benefit Confidence in the Medical Spice with

4435 Hugh Howell Road SLUP-21-0004 FLU Map


CV-21-0002


CV-21-0003 CV-21-0004

Page 186 of 197

OI 19/
Folder S:\GIS\PlanningZoning\Projects\SLUP\SLUP-20-0001\
Credit: City of Tucker, DeKalb County, OpenStreetMap, Mapbox, Atlanta Regional Commission

SLUP

To: Honorable Mayor and City Council Members

From: Courtney Smith, Planning and Zoning Director

CC: Tami Hanlin, City Manager

Date: January 18, 2022

RE: Memo on a Resolution to Appoint/Reappoint Planning Commission Members

Issue:

A resolution is required to appoint two new Planning Commission members and reappoint three existing Planning Commission members.

Recommendation:

Appoint/Reappoint

Background:

Jessica Vargas resigned from the Planning Commission in 2021 when she moved outside of the city. Cara Schroeder had to vacate the Planning Commission when elected to City Council in 2021.

The terms for Steve Smith, Seth Burrow, and Frank Sapp expire on January 24, 2022.

These appointments are two-year terms and will run through January 24, 2024.

Planning Commission is a 7-member board. All members of boards, commissions, and authorities of the city shall be nominated by the mayor and subject to confirmation by the city council.

Summary:

This resolution is needed so that we have a full board to review rezoning's, special land use permits, comprehensive plan amendments, and text amendments.

A RESOLUTION TO APPOINT MEMBERS TO THE PLANNING COMMISSION FOR THE CITY OF TUCKER, GEORGIA

WHEREAS, the City of Tucker is authorized by the City Charter to create Boards, Commissions and Authorities; and

WHEREAS, the Mayor and Council desire to create a Planning Commission with 7 members to assist with planning and zoning within the City of Tucker;

WHEREAS, the Mayor of the City of Tucker is authorized to appoint members of the Planning Commission, subject to approval by the Council of the City of Tucker.

AND WHEREAS, the Mayor and Council of the City of Tucker while at their meeting on January 24, 2022, appoints and reappoints the following members to fill the vacancies and term expirations on the Planning Commission;

NOW THEREFORE BE IT RESOLVED by the Mayor and Council of the City of Tucker while at their meeting on January 24, 2022, appoints and reappoints the following as members of the City of Tucker Planning Commission for the term described;

MEMBER	TERM	DATES
Derik West	2-year Term	January 24, 2022 - January 24, 2024
Karen Rivers	2-year Term	January 24, 2022 - January 24, 2024
Steve Smith	2-year Term	January 24, 2022 - January 24, 2024
Seth Burrow	2-year Term	January 24, 2022 - January 24, 2024
Frank Sapp	2-year Term	January 24, 2022 - January 24, 2024
SO RESOLVED , this the 24 th day APPROVED:	of January 2022.	
Frank Auman, Mayor		
ATTEST:		
Bonnie Warne, City Clerk	(seal)	

Page 1 of 1

RESOLUTION R2022-01-04

A RESOLUTION TO APPOINT MEMBERS TO THE DOWNTOWN DEVELOPMENT AUTHORITY (DDA) FOR THE CITY OF TUCKER, GEORGIA

WHEREAS, the City of Tucker is authorized by the City Charter to create Boards, Commissions and Authorities; and

WHEREAS, the Mayor and Council desire to create a Downtown Development Authority with 7 members to assist with revitalization and redevelopment within the City of Tucker;

WHEREAS, the Mayor of the City of Tucker is authorized to appoint members of the Downtown Development Authority, subject to approval by the Council of the City of Tucker.

AND WHEREAS, the Mayor and Council of the City of Tucker while at their meeting on January 24th, 2022, appoints and reappoints the following members to fill the vacancies and term expirations on the Downtown Development Authority;

NOW THEREFORE BE IT RESOLVED by the Mayor and Council of the City of Tucker while at their meeting on January 24, 2022, appoints and reappoints the following as members of the Downtown Development Authority with the term described.

MEMBER	TERM	DATES
Kermit Hairston	4 years	January 24, 2022 to January 24, 2026
Crayton Lankford	4 years	January 24, 2022 to January 24, 2026
SO RESOLVED , this the 24 th Da	ay of January, 2022	
APPROVED:		
Frank Auman, Mayor	-	
ATTEST:		
Bonnie Warne, City Clerk	- (sea	1)

To: Honorable Mayor and City Council Members

From: John McHenry

CC: Tami Hanlin, City Manager

Date: January 24, 2022

RE: Resolution for Reappointment and Appointment to Downtown Development Authority

Issue:

A resolution is required by the City to appoint and/or reappoint members to the Tucker Downtown Development Authority.

Recommendation:

Appoint/Reappoint

Background:

Two members of the Downtown Development Authority, Crayton Lankford and Joe Kilpatrick, have terms that expired on January 8th, 2022.

Summary:

The new terms will extend for 4 years and therefore will expire on January 8th, 2026. All members of the boards, commissions, and authorities of the City shall be nominated by the Mayor and subject to confirmation by the City Council. Crayton Lankford is proposed for reappointment, Kermit Hairston is proposed for appointment.

Financial Impact:

None

A RESOLUTION TO APPOINT MEMBERS TO THE PUBLIC FACILITIES AUTHORITY FOR THE CITY OF TUCKER, GEORGIA

WHEREAS, the City of Tucker Public Facilities Authority Act was enacted in 2019 with a May 6, 2019 effective date;

WHEREAS, the City of Tucker appointed the members of the Authority on January 14, 2020;

WHEREAS, the City of Tucker Authority terms shall appointed to a term of two years;

WHEREAS, to be eligible to serve, a person shall be at least 21 years of age, shall be a resident of the City for at least two years prior to the appointment, and shall not have been convicted of a felony;

NOW THEREFORE BE IT RESOLVED by the Mayor and Council of the City of Tucker, while at their regular meeting on January 24, 2022, reappoints the following as members of the City of Tucker Public Facilities Authority with the term described;

Bill Kaduck	Two Year Term: <u>1/24/2022 - 1/11/2024</u>
Shawn Stone	Two Year Term: <u>1/24/2022 - 1/11/2024</u>
SO ORDAINED and EFFECTIVE, th	is 24th day of January 2022.
APPROVED:	
Frank Auman, Mayor	
ATTEST:	
Bonnie Warne, City Clerk	(seal)

To: Honorable Mayor and City Council Members

From: John McHenry, Assistant City Manager

CC: Tami Hanlin, City Manager

Date: January 24, 2022

RE: Reappointment to Public Facilities Authority

Issue:

A resolution to reappoint two members to the Public Facilities Authority.

Recommendation:

Reappoint two existing members.

Background:

Existing members Bill Kaduck and Shawn Stone have terms that expired on January, 13th of 2022. They will be reappointed to two-year terms that will expire on January, 13th of 2024

Summary:

Reappointment of two existing

Financial Impact:

None

To: Honorable Mayor and City Council Members

From:

CC: Tami Hanlin, City Manager

Date: January 19, 2022

RE: Urban Redevelopment Agency Appointment

Issue:

An appointment is needed to fill the remaining term of Derik West, which runs through July 13, 2022.

Recommendation:

Appoint.

Background:

The Urban Redevelopment Agency was created on July 13, 2020. It is a 4-member board made up of two staff members and two members from the community.

A RESOLUTION TO APPOINT A MEMBER OF THE CITY OF TUCKER URBAN REDEVELOPMENT AGENCY

WHEREAS, the City of Tucker Urban Redevelopment Agency was enacted and made effective on July 13th, 2020;

WHEREAS, with respect to the appointment of new members, they shall be appointed for a term of two years;

WHEREAS, to be eligible to serve, a person shall be at least 21 years of age, shall be a resident of the City for at least two years prior to the appointment, and shall not have been convicted of a felony;

NOW THEREFORE BE IT RESOLVED by the Mayor and Council of the City of Tucker, while at their regular meeting on January 24, 2022, replace Derik West and appoint the following citizen as a member of the City of Tucker Urban Redevelopment Agency with the term described below;

MEMBER	TERM	DATES
Joe Kilpatrick	Continue Term	January 24, 2022 – July 13, 2022
SO ORDAINED and EFFE	CTIVE, this 24th day of	f January 2022.
APPROVED:		
Frank Auman, Mayor		
ATTEST:		
Bonnie Warne, City Clerk		(seal)

A RESOLUTION TO APPOINT MEMBERS TO THE ZONING BOARD OF APPEALS FOR THE CITY OF TUCKER, GEORGIA

WHEREAS, the City of Tucker is authorized by the City Charter to create Boards, Commissions and Authorities; and

WHEREAS, the Mayor and Council desire to create a Zoning Board of Appeals with 5 members to assist with planning and zoning within the City of Tucker;

WHEREAS, the Mayor of the City of Tucker is authorized to appoint members to the Zoning Board of Appeals, subject to approval by the Council of the City of Tucker.

AND WHEREAS, the Mayor and Council of the City of Tucker, while at their meeting on January 24, 2022, appoints and reappoints the following members to fill the vacancy and term expiration on the Zoning Board of Appeals;

NOW THEREFORE BE IT RESOLVED by the Mayor and Council of the City of Tucker while at their meeting on January 24, 2022, appoints and reappoints the following as members of the City of Tucker Zoning Board of Appeals for the term described;

MEMBER	TERM	DATES
Andrea Bennett	2-year Term	January 24, 2022 -February 24, 2024
Joe Singleton	2-year Term	January 24, 2022 - February 24, 2024
SO RESOLVED , this the 24 th	day of January 2022.	
APPROVED:		
Frank Auman, Mayor		
ATTEST:		
Bonnie Warne, City Clerk	(seal)	