

Planning and Zoning 1975 Lakeside Parkway, Suite 350

Tucker, GA 30084 Phone: 678-597-9040

Email: permits@tuckerga.gov Website: www.tuckerga.gov

Land Use Petition Application

• • • • • • • • • • • • • • • • • • • •	current Variance	ive Plan Amendment Modif	ication
	APPLICANT IN	FORMATION	
Applicant is the:	er 🗆 Owner's	s Agent 🔀 Co	ntract Purchaser
Name: Chick-fil-A, Inc.			
Address: 5200 Buffington Road			,
City: Atlanta	State: GA		Zip: 30349
Contact Name: Jennifer Santelli			
Phone: 770-324-5282		Email: jenn.sant	telli@cfacorp.com
	OWNER INF	ORMATION	
Name: John Poulakis			
Address: 1610 DeKalb Avenue			
City: Atlanta	State: GA		Zip: 30307
Contact Name: John Poulakis			
Phone: 404-536-7601		Email: cookiepo	ulakis@hotmail.com
	PROPERTY IN	IFORMATION	
Property Address: 4435 Hugh Hov	well Road Tucker	, GA 30084	
Present Zoning District(s): DT-2		Requested Zoning	g District(s):
Present Land Use Category: Downto	own Corridor	Requested Land L	Jse Category:
Land District: 18	Land Lot(s): 214		Acreage: 2.05
Proposed Development: Chick-fil-	A Restaurant		
Concurrent Variance(s): N/A			
	RESIDENTIAL D	DEVELOPMENT	
No. of Lots/Dwelling Units:	Dwelling Unit Size	e (Sq. Ft.):	Density:
N	ON-RESIDENTIA	L DEVELOPMEN	IT
No. of Buildings/Lots: 1	Total Building Sq.	Ft.: 4,989	Density: .056

Planning and Zoning 1975 Lakeside Parkway, Suite 350

Tucker, GA 30084 Phone: 678-597-9040

Website: www.tuckerga.gov

Land Use Petition Application

Type of Application: □ Rezor	ning ⊔ Comprehens current Variance	sive Plan Amendment Modif	•			
	APPLICANT IN	IFORMATION				
Applicant is the:	er 🗆 Owner's	s Agent 🗵 Co	ntract Purchaser			
Name: Chick-fil-A, Inc						
Address: 5200 Buffington Road						
City: Atlanta	State: GA		Zip: 30349			
Contact Name: Jennifer Santelli						
Phone: 770-324-5282		Email: jenn.san	telli@cfacorp.com			
	OWNER INF	ORMATION				
Name: Scott and Wanda Nelson						
Address: 4874 Five Forks Trickum Rd	SW					
City: Lilburn	State: GA		Zip: 30047			
Contact Name: Wanda Nelson						
Phone: (770) 493-7068		Email: Seinc1@	bellsouth.net			
PROPERTY INFORMATION						
Property Address: 2239 Dillard St						
Present Zoning District(s): C-1		Requested Zoning	g District(s):			
Present Land Use Category: Local	Commercial	Requested Land l	Jse Category:			
Land District:	Land Lot(s):		Acreage: 0.28			
Proposed Development: Chick-fil-A	\ restaurant					
Concurrent Variance(s): CV-21-00	002, CV-21-0003, an	d CV-21-0004, plus	added variance for residential buffer			
	RESIDENTIAL D	DEVELOPMENT				
No. of Lots/Dwelling Units:	Dwelling Unit Size	e (Sq. Ft.):	Density:			
N	ON-RESIDENTIA	L DEVELOPMEN	IT			
No. of Buildings/Lots:	Total Building Sq.	Ft.: 2,500 SF	Density: .205			

Planning and Zoning 1975 Lakeside Parkway, Suite 350

Tucker, GA 30084 Phone: 678-597-9040

Email: LandDevelopment@tuckerga.gov

Website: www.tuckerga.gov

Land Use Petition Application Checklist

FOR ALL REZONINGS, COMPREHENSIVE PLAN AMENDMENTS, SPECIAL LAND USE PERMITS, MODIFICATIONS, AND CONCURRENT VARIANCES

REQUIRED ITEMS	NUMBER OF COPIES	CHECK √
One (1) digital copy of all submitted materials	One (1) flash drive or CD in .JPEG, .PDF format	X
Pre-Application Meeting Form	• One (1) Copy	
Public Participation Report	• One (1) Copy	X
Application, Signature Pages, Disclosure Form	One (1) Copy each	X
Written Legal Description	One (1) 8 ½" x 11" Legal Description	X
Boundary Survey and Proposed Site Plan (See Page 9 for Requirements)	 Five (5) Full-Size (24" x 36") Copies of each One (1) 8 ½" x 11" or 11x17 Site Plan of each 	X
Building Elevations (renderings or architectural drawings to show compliance with Article 5)	• One (1) Copy	X
Letter of Intent	• One (1) Copy	X
Analysis of Standards/Criteria (See page 5)	• One (1) Copy	X
Environmental Site Analysis Form	• One (1) Copy	X
Trip Generation Letter (ITE Trip Generation Manual)	• One (1) Copy	X
THE FOLLOWING	ITEMS MAY BE REQUIRED	
Traffic Impact Study (See Sec. 46-1309)	• Three (3) Copies	X
Development of Regional Impact Review Form	• Three (3) Copies	
Environmental Impact Report	• Three (3) Copies	
Noise Study Report	• Three (3) Copies	
Other items required per the Zoning Ordinance	• Three (3) Copies	
LAND USE PE	TITION FEE SCHEDULE	
Residential Rezoning	\$500	
Multifamily Rezoning	\$750	
Non-Residential Rezoning	\$750	
Special Land Use Permit	\$400	X
Comprehensive Plan Amendment	\$1000	
Modification	\$250	X
Variance (includes Concurrent Variance)	\$300	X
Public Notice Sign Fee	\$80 (per required sign)	X

RECEIVED CITY OF TUCKER 03/18/2022

PLANNING & ZONING DEPARTMENT

APPLICANT'S CERTIFICATION

THE UNDERSIGNED BELOW STATES UNDER OATH THAT THEY ARE AUTHORIZED TO MAKE THIS APPLICATION. THE UNDERSIGNED IS AWARE THAT NO APPLICATION OR REAPPLICATION AFFECTING THE SAME LAND SHALL BE ACTED UPON WITHIN 24 MONTHS FROM THE DATE OF LAST ACTION BY THE MAYOR AND CITY COUNCIL.

Public Participation Plan Report

A TO HUNT PERMENT FORM TURNS

ennifer Santelli, Principal Development Lead

entral interdiction offers fuckeys information about who you reached a

one of the three of the symbiter haps meeting, the meeting format

a serie passe de trabación de Mila incombiga

160 of 2000, the head as leaves the as phot we a place are in

Signature of Notary Public

And Tent Responses

e on behalf of the analyzant (e

Last que a lon/concern/comment/request for last the programme of m

2. Selectors in inference of the property of t

Notary Seal

LAND USE PETITION APPLICATION - REVISED JULY 15, 2020

APPLICANT'S CERTIFICATION

THE UNDERSIGNED BELOW STATES UNDER OATH THAT THEY ARE AUTHORIZED TO MAKE THIS APPLICATION. THE UNDERSIGNED IS AWARE THAT NO APPLICATION OR REAPPLICATION AFFECTING THE SAME LAND SHALL BE ACTED UPON WITHIN 24 MONTHS FROM THE DATE OF LAST ACTION BY THE MAYOR AND CITY COUNCIL.

Bu'dgettl Ganta

8/13/21

MATTHEW ROBERTS **NOTARY PUBLIC** Cherokee County State of Georgia My Comm. Expires July 29, 2022

Date

Bridgette Ganter, Branch Manager
Type or Print Name and Title

Notary Seal

Signature of Notary Public

RECEIVED CITY OF TUCKER

PROPERTY OWNER'S CERTIFICATION

I do solemnly swear and attest, subject to criminal penalties for false swearing, that I am the legal owner, as reflected in the records of DeKalb County, Georgia, of the property identified below, which is the subject of the attached Land Use Petition before the City of Tucker, Georgia. As the legal owner of record of the subject property, I hereby authorize the individual named below to act as the applicant in the pursuit of the Application for Rezoning (RZ), Comprehensive Plan Amendment (CA), Special Land Use Permit (SLUP), Modification (M) & Concurrent Variance (CV) in request of the items indicated below.

	Poulakis Perty Owner)	, au	thorize, _		Chick-fil-A, Inc.	
to file for(RZ,	SLUP CA, SLUP, M, CV)	, at	N. Olivery de	4435 Hu	ugh Howell Road (Address)	
on this date	(Month)		(Day)	, 20	2/_	

- I understand that if a rezoning is denied or assigned a zoning classification other than the classification requested in the
 application, then no portion of the same property may again be considered for rezoning for a period of twenty-four (24)
 months from the date of the mayor and city councils' final decision.
- I understand that if an application for a special land use permit affecting all or a portion of the same property for which an
 application for the same special land use was denied shall not be submitted before twenty-four (24) months have passed
 from the date of final decision by the mayor and city council on the previous special land use permit.
- I understand that failure to supply all required information (per the relevant Applicant Checklists and requirements of the Tucker Zoning Ordinance) will result in REJECTION OF THE APPLICATION.
- I understand that preliminary approval of my design plan does not authorize final approval of my zoning or signage request.
 I agree to arrange additional permitting separately, after approval is obtained.
- I understand that representation associated with this application on behalf of the property owner, project coordinator, potential property owner, agent or such other representative shall be binding.

Signature of Property Owner Date

John Poulakis

Type or Print Name and Title

Type of Fille Name and Title

Signature of Notary Public

08-11-2021

Date

PAMELA L. BUTTERSNITZ
Notary Public, Georgia
Notary Sealekalb County
My Commission Expires

RECEIVED CITY OF TUCKER 03/18/2022

PLANNING & ZONING DEPARTMENT

PROPERTY OWNER'S CERTIFICATION

I do solemnly swear and attest, subject to criminal penalties for false swearing, that I am the legal owner, as reflected in the records of DeKalb County, Georgia, of the property identified below, which is the subject of the attached Land Use Petition before the City of Tucker, Georgia. As the legal owner of record of the subject property, I hereby authorize the individual named below to act as the applicant in the pursuit of the Application for Rezoning (RZ), Comprehensive Plan Amendment (CA), Special Land Use Permit (SLUP), Modification (M) & Concurrent Variance (CV) in request of the items indicated below.

I,	Scott Nelson	Chick-fil-A, Inc.
	(Property Owner)	(Applicant)
to file for	SLUP	4435 Hugh Howell Rd and 2239 Dillard St
	(RZ, CA, SLUP, M, CV)	(Address)
on this date	(Month)	, 20

- I understand that if a rezoning is denied or assigned a zoning classification other than the classification requested in the application, then no portion of the same property may again be considered for rezoning for a period of twenty-four (24) months from the date of the mayor and city councils' final decision.
- I understand that if an application for a special land use permit affecting all or a portion of the same property for which an application for the same special land use was denied shall not be submitted before twenty-four (24) months have passed from the date of final decision by the mayor and city council on the previous special land use permit.
- I understand that failure to supply all required information (per the relevant Applicant Checklists and requirements of the Tucker Zoning Ordinance) will result in REJECTION OF THE APPLICATION.
- | understand that preliminary approval of my design plan does not authorize final approval of my zoning or signage request. | agree to arrange additional permitting separately, after approval is obtained.
- I understand that representation associated with this application on behalf of the property owner, project coordinator, potential property owner, agent or such other representative shall be binding.

Signature of Property Owner

Date

Scott Nelson

Type or Print Name and Title

1 A

Signature of Notary Public

3/14/22

Notary County County

RECEIVED CITY OF TUCKE

03/18/2022

PLANNING & ZONING

ANALYSIS OF STANDARDS/CRITERIA

ZONING MAP AMENDMENT CRITERIA

Section 46-1560 of the City of Tucker Zoning Ordinance lists standards and factors that are found to be relevant to the exercise of the city's zoning powers and shall govern the review of all proposed amendments to the Official Zoning Map. The applicant shall write a detailed written analysis of each standard and factor as it relates to their proposed project.

COMPREHENSIVE PLAN MAP AMENDMENT CRITERIA

Section Sec. 46-1559 of the City of Tucker Zoning Ordinance lists standards and factors that are found to be relevant for evaluating applications for amendments to the comprehensive plan map and shall govern the review of all proposed amendments to the comprehensive plan map. The applicant shall write a detailed written analysis of each standard and factor as it relates to their proposed project.

SPECIAL LAND USE PERMIT CRITERIA

Section 46-1594 and 46-1595 of the City of Tucker Zoning Ordinance lists specific criteria that shall be considered by the planning and zoning department, the planning commission, and the mayor and city council in evaluating and deciding any application for a special land use permit. No application for a special land use permit shall be granted by the mayor and city council unless satisfactory provisions and arrangements have been made concerning each of the following factors, all of which are applicable to each application, and the application is in compliance with all applicable regulations in Article 4. The applicant shall write a detailed written analysis of criteria as it relates to their proposed project.

CONCURRENT VARIANCE CRITERIA

Section 46-1633 of the City of Tucker Zoning Ordinance lists specific criteria the board shall use in determining whether or not to grant a variance. The applicant shall provide a written analysis of how the request complies with this criteria, if they are requesting a concurrent variance.

RECEIVED CITY OF TUCKER 03/18/2022

ENVIRONMENTAL SITE ANALYSIS FORM

Analyze the impact of the proposed rezoning and provide a written point-by-point response to Points 1 through 3:

1. **CONFORMANCE WITH THE COMPREHENSIVE PLAN**. Describe the proposed project and the existing environmental conditions on the site. Describe adjacent properties. Include a site plan that depicts the proposed project.

Describe how the project conforms to the Comprehensive Land Use Plan. Include the portion of the Comprehensive Plan Land Use Map which supports the project's conformity to the Plan. Evaluate the proposed project with respect to the land use suggestion of the Comprehensive Plan as well as any pertinent Plan policies.

- 2. **ENVIRONMENTAL IMPACTS OF THE PROPOSED PROJECT**. For each environmental site feature listed below, indicate the presence or absence of that feature on the property. Describe how the proposed project may encroach or adversely affect an environmental site feature. Information on environmental site features may be obtained from the indicated source(s).
 - a. Wetlands
 - U. S. Fish and Wildlife Service, National Wetlands Inventory (http://wetlands.fws.gov/downloads.htm)
 - Georgia Geologic Survey (404-656-3214)
 - Field observation and subsequent wetlands delineation/survey if applicable
 - b. Floodplain
 - Federal Emergency Management Agency (http://www.fema.org)
 - Field observation and verification
 - c. Streams/stream buffers
 - Field observation and verification
 - d. Slopes exceeding 25 percent over a 10-foot rise in elevation
 - United States Geologic Survey Topographic Quadrangle Map
 - Field observation and verification
 - e. Vegetation
 - United States Department of Agriculture, Nature Resource Conservation Service
 - Field observation
 - f. Wildlife Species (including fish)
 - United States Fish and Wildlife Service
 - Georgia Department of Natural Services, Wildlife Resources Division, Natural Heritage Program
 - Field observation
 - g. Archeological/Historical Sites
 - Historic Resources Survey
 - Georgia Department of Natural Resources, Historic Preservation Division
 - Field observation and verification

ENVIRONMENTAL SITE ANALYSIS FORM (CONTINUED)

- 3. **PROJECT IMPLEMENTATION MEASURES**. Describe how the project implements each of the measures listed below as applicable. Indicate specific implementation measures required to protect environmental site feature(s) that may be impacted.
 - a. Protection of environmentally sensitive areas, i.e., floodplain, slopes exceeding 25 percent, river corridors.
 - b. Protection of water quality
 - c. Minimization of negative impacts on existing infrastructure
 - d. Minimization on archeological/historically significant areas
 - e. Minimization of negative impacts on environmentally stressed communities where environmentally stressed communities are defined as communities exposed to a minimum of two environmentally adverse conditions resulting from public and private municipal (e.g., solid waste and wastewater treatment facilities, utilities, airports, and railroads) and industrial (e.g., landfills, quarries and manufacturing facilities) uses.
 - f. Creation and preservation of green space and open space
 - g. Protection of citizens from the negative impacts of noise and lighting
 - h. Protection of parks and recreational green space
 - i. Minimization of impacts to wildlife habitats

WITHIN THE (2) YEARS IMMEDIATELY PRECEDING THE FILING OF THIS ZONING PETITION HAVE YOU, AS THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, OR AN ATTORNEY OR AGENT OF THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, MADE ANY CAMPAIGN CONTRIBUTIONS AGGREGATING \$250.00 OR MORE OR MADE GIFTS HAVING AN AGGREGATE VALUE OF \$250.00 TO THE MAYOR OR ANY MEMBER OF THE CITY COUNCIL.

E ONE:	YES (if YES, complete points 1 thro	ough 4);	6	NO (if NO, complete only point 4)			
CIRCLE ONE:	Party to Petition (If party to petition, complete sections 2, 3 and 4 below)						
	In Opposition to Pet	ition (If in oppo	osition,	proceed to sections 3 and 4 below)			
List all individuals	s or business entities which	have an own	ership	interest in the property which is the subjec			
this rezoning pet				的最高。因为他也有关的			
1.			5.				
2.			6.				
3.			7.				
4.			8.	THE RESERVE AND THE RESERVE AS A SECOND OF THE R			
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		N TO SE					
Section 36-67A-1 to the undersign	acknowledges that this disc. et. seq. Conflict of interest ed's best knowledge, inform	in zoning acti ation and be	ons, a	ccordance with the Official Code of Georgia nd that the information set forth herein is t			
Name (nrint) N							

RECEIVED CITY OF TUCKER 03/18/2022

DI ANNING & ZONIN

DEPARTMENT

WITHIN THE (2) YEARS IMMEDIATELY PRECEDING THE FILING OF THIS ZONING PETITION HAVE YOU, AS THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, OR AN ATTORNEY OR AGENT OF THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, MADE ANY CAMPAIGN CONTRIBUTIONS AGGREGATING \$250.00 OR MORE OR MADE GIFTS HAVING AN AGGREGATE VALUE OF \$250.00 TO THE MAYOR OR ANY MEMBER OF THE CITY COUNCIL.

	f party to petition, com	aplete sections 2, 3 and 4 below)	
In Opposition to Pe	etition (If in oppositio	on, proceed to sections 3 and 4 belo	ow)
s or business entities which	n have an ownersh	ip interest in the property w	hich is the subject o
tition:			
	5.		
	6.		
	7.		
	8	•	
	s or business entities which	s or business entities which have an ownersh tition: 5 6	s or business entities which have an ownership interest in the property w

Name of Government Official	Total Dollar Amount	Date of Contribution	Enumeration and Description of Gift Valued at \$250.00 or more

4. The undersigned acknowledges that this disclosure is made in accordance with the Official Code of Georgia, Section 36-67A-1 et. seq. Conflict of interest in zoning actions, and that the information set forth herein is true to the undersigned's best knowledge, information and belief.

Name (print) Bridgette Ganter		
Signature: By dette Hann	Date:	8/13/21 RECEIVED
		CITY OF TUCKE

03/18/2022

WITHIN THE (2) YEARS IMMEDIATELY PRECEDING THE FILING OF THIS ZONING PETITION HAVE YOU, AS THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, OR AN ATTORNEY OR AGENT OF THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, MADE ANY CAMPAIGN CONTRIBUTIONS AGGREGATING \$250.00 OR MORE OR MADE GIFTS HAVING AN AGGREGATE VALUE OF \$250.00 TO THE MAYOR OR ANY MEMBER OF THE CITY COUNCIL.

CIRCLE ONE:	Party to Petition (If pa	arty to petition	n, complet	e sections 2, 3 and 4 below)				
				roceed to sections 3 and 4 below)				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
List all individuals or bu	List all individuals or business entities which have an ownership interest in the property which is the subject of							
this rezoning petition:								
1.			5.					
2.			6.					
3.			7.					
4.			8.					
Name of Government	Total Dollar Amount	Date of Contribu	ution	Enumeration and Description of Gift Valued at \$250.00 or more				
Non-of-Community	Total Dollar	Date of		Enumeration and Description of Gift Valued				
Name of Government Official	Total Dollar Amount		ution	Enumeration and Description of Gift Valued at \$250.00 or more				
			ution					
			ution					
			ution					
			ution					
			ution					
			ution					
			ution					

SLUP-21-0004, CV-21-0002, CV-21-0003, CV-21-0004, CV-22-0006

LAND USE PETITION APPLICATION - REVISED DECEMBER 9, 2020

WITHIN THE (2) YEARS IMMEDIATELY PRECEDING THE FILING OF THIS ZONING PETITION HAVE YOU, AS THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, OR AN ATTORNEY OR AGENT OF THE APPLICANT OR OPPONENT FOR THE REZONING PETITION, MADE ANY CAMPAIGN CONTRIBUTIONS AGGREGATING \$250.00 OR MORE OR MADE GIFTS HAVING AN AGGREGATE VALUE OF \$250.00 TO THE MAYOR OR ANY MEMBER OF THE CITY COUNCIL.

LE ONE:	YES (if YES, complete p	points 1 through 4	1);	NO (1 NO, complete only point 4)
CIRCLE ONE:	Party to Pe	etition (If party t	te sections 2, 3 and 4 below)	
	In Opposit	ion to Petition	(If in opposition, p	proceed to sections 3 and 4 below)
List all individu	als or business entit	ies which have	an ownership in	nterest in the property which is the subject
this rezoning p	etition:		5.	
2.			6.	
3.			7.	
4.			8.	
CAMPAIGN CO Name of Gover Official	ontributions: rnment Total		Date of Contribution	Enumeration and Description of Gift Value at \$250.00 or more
			SHITISACION	at \$250.00 or more

4.	The undersigned acknowledges that this disclosure is made in accordance with the Official Code of Georgia, Section 36-67A-1 et. seq. Conflict of interest in zoning actions, and that the information set forth herein is true
	to the undersigned's best knowledge, information and belief.

Section 36-6/A-1 et. seq. Cor	iffict of interest in zoning actio	ns, and that the information set forth herein i	is true
to the undersigned's best known	owledge, information and belie	ef.	
Scott Nelson	10		
Name (print)	1///		

RECEIVED CITY OF TUCKER 03/18/2022

PROPERTY OWNER'S CERTIFICATION

I do solemnly swear and attest, subject to criminal penalties for false swearing, that I am the legal owner, as reflected in the records of DeKalb County, Georgia, of the property identified below, which is the subject of the attached Land Use Petition before the City of Tucker, Georgia. As the legal owner of record of the subject property, I hereby authorize the individual named below to act as the applicant in the pursuit of the Application for Rezoning (RZ), Comprehensive Plan Amendment (CA), Special Land Use Permit (SLUP), Modification (M) & Concurrent Variance (CV) in request of the items indicated below.

I,	Scott Nelson	Chick-fil-A, Inc.					
	(Property Owner)	(Applicant)					
to file for	SLUP	4435 Hugh Howell Rd and 2239 Dillard St					
	(RZ, CA, SLUP, M, CV)	(Address)					
on this date	(Month)	, 20					

- I understand that if a rezoning is denied or assigned a zoning classification other than the classification requested in the application, then no portion of the same property may again be considered for rezoning for a period of twenty-four (24) months from the date of the mayor and city councils' final decision.
- I understand that if an application for a special land use permit affecting all or a portion of the same property for which an application for the same special land use was denied shall not be submitted before twenty-four (24) months have passed from the date of final decision by the mayor and city council on the previous special land use permit.
- I understand that failure to supply all required information (per the relevant Applicant Checklists and requirements of the Tucker Zoning Ordinance) will result in REJECTION OF THE APPLICATION.
- | understand that preliminary approval of my design plan does not authorize final approval of my zoning or signage request. | agree to arrange additional permitting separately, after approval is obtained.
- I understand that representation associated with this application on behalf of the property owner, project coordinator, potential property owner, agent or such other representative shall be binding.

Signature of Property Owner

Date

Scott Nelson

Type or Print Name and Title

Jane & MCH

tary Public

3/14/22

Notary County County

RECEIVED CITY OF TUCKER

03/18/2022 PLANNING & ZONIN

SITE PLAN CHECKLIST

All items must be included on the Site Plan; separate Site Plans may be necessary to address all items

- 1. Key and/or legend and site location map with North arrow
- 2. Boundary survey of subject property which includes dimensions along property lines that match the metes and bounds of the property's written legal description and clearly indicates the point of beginning
- 3. Acreage of subject property
- 4. Location of land lot lines and identification of land lots
- 5. Existing, proposed new dedicated and future reserved rights-of-way of all streets, roads, and railroads adjacent to and on the subject property
- 6. Proposed streets on the subject site
- 7. Posted speed limits on all adjoining roads
- 8. Current zoning of the subject site and adjoining property
- 9. Existing buildings with square footages and heights (stories), wells, driveways, fences, cell towers, and any other structures or improvements on the subject property
- 10. Existing buildings with square footages and heights (stories), wells, driveways, fences, cell towers, and any other structures or improvement or adjacent properties within 400 feet of the subject site based on the City's aerial photography or an acceptable substitute as approved by the Director
- 11. Location of proposed buildings (except single family residential lots) with total square footage
- 12. Layout and minimum lot size of proposed single family residential lots
- 13. Topography (surveyed or City) on subject site and adjacent property within 200 feet as required to assess runoff effects
- 14. Location of overhead and underground electrical and pipeline transmission/conveyance lines
- 15. Required and/or proposed setbacks
- 16. 100 year flood plain horizontal limits and flood zone designations as shown on survey or FEMA FIRM maps
- 17. Required landscape strips, undisturbed buffers, and any other natural areas as required or proposed
- 18. Required and proposed parking spaces; Loading and unloading facilities
- 19. Lakes, streams, and waters on the state and associated buffers
- 20. Proposed stormwater management facilities
- 21. Community wastewater facilities including preliminary areas reserved for septic drain fields and points of access
- 22. Availability of water system and sanitary sewer system
- 23. Tree lines, woodlands and open fields on subject site
- 24. Entrance site distance profile assuming the driver's eye at a height of 3.5 feet
- 25. Wetlands shown on the County's GIS maps or survey.
- 26. Mail kiosk location.

RECEIVED CITY OF TUCKER

03/18/2022

PLANNING & ZONING DEPARTMENT

LAND USE PETITION CALENDAR

*Application Deadline	Planning Commission	M&CC 1 st Read	M&CC 2 nd Read		
11/9/2020	12/17/2020	1/11/2021	2/8/2021		
12/14/2020	1/21/2021	2/8/2021	3/8/2021		
1/11/2021	2/18/2021	3/8/2021	4/12/2021		
2/8/2021	3/18/2021	4/12/2021	5/10/2021		
3/8/2021	4/15/2021	5/10/2021	6/14/2021		
4/12/2021	5/20/2021	6/14/2021	7/12/2021		
5/10/2021	6/17/2021	7/12/2021	8/9/2021		
6/14/2021	7/15/2021	8/9/2021	9/13/2021		
7/12/2021	8/19/2021	9/13/2021	10/12/2021		
8/9/2021	9/16/2021	10/12/2021	11/8/2021		
9/13/2021	10/21/2021	11/8/2021	12/13/2021		
10/12/2021	11/18/2021	12/13/2021	TBD		
11/8/2021	12/16/2021	TBD	TBD		

^{*}Incomplete applications will not be accepted.

PUBLIC PARTICIPATION PLAN AND REPORT

See separate document.

PUBLIC NOTICE REQUIREMENTS

Sec. 46-1526 details the public notice requirements for land use petitions, which include public notice sign(s), advertisement in The Champion newspaper, and written notice to everyone within 500'.

- The applicant is responsible for posting the public notice sign(s). City of Tucker Staff will order the signs(s) and provide the required timeframe for posting.
- The City of Tucker is responsible for placing the legal ad in The Champion newspaper
- The City of Tucker is responsible for mailing the written notification to surrounding property owners.

RECEIVED
CITY OF TUCKER
03/18/2022
PLANNING & ZONING
DEPARTMENT

PROPERTY COMPLIANCE

All Occupational Tax payments must be paid in-full and any and all outstanding code violations on the property must be rectified prior to the public hearing.

RECEIVED CITY OF TUCKER 03/18/2022

PLANNING & ZONING DEPARTMENT

Concurrent Variance Criteria

Chick-fil-A Tucker 4435 Hugh Howell Road Tucker, GA 30084

VARIANCE #1 REQUEST: ALLOW DRIVE-THROUGH FACILTY BETWEEN STREET AND BUILDING

Section 46-1166 of the City of Tucker municipal code prohibits the locations of drive-through restaurant facilities between the building and the street in the DT-2 Downtown Corridor zoning district.

Criteria in support of Chick-fil-A's site layout, which locates drive-through facilities between the building and Hugh Howell Road, as well as Rosser Terrace Road:

- a. By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of exceptional topographic and other site conditions (such as, but not limited to, floodplain, major stand of trees, steep slope), which were not created by the owner or applicant, the strict application of the requirements of this division would deprive the property owner of rights and privileges enjoyed by other property owners in the same zoning district.
 - The subject parcel abuts Hugh Howell Road to the north, Rosser Terrace to the east and residentially zoned properties to the west and south. Section 46-1166 requires that drive-through restaurant facilities be located a minimum of 60 feet from residentially zoned parcels. Since the lot is rectangular, the available area for the drive-through is confined to a narrow section in the center of the parcel. This configuration does not provide adequate space for vehicles to circulate and greatly diminishes the available length for drive-through queue. The geometry of the parcel and the zoning designation of the adjacent parcels were not created by the owner or applicant. Strict application of these requirements will deprive Chick-fil-A of an efficient drive-through operation, which is enjoyed by nearby property owners whose businesses are not located at street intersections and do not abut residential properties.
- b. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.
 - Request of this variance does not go beyond the minimum necessary to afford relief since drive-through design is adhering to City of Tucker ordinance requirements as much as possible. The proposed drive-through facilities are a minimum of 60 feet from residentially zoned adjacent properties and provide a bypass lane, in addition to the extra lane design employed by Chick-fil-A. Chick-fil-A will provide a vegetative screen designed to block vehicles from view, while keeping the building visible. Special privilege is not being granted.

- c. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.
 - Grant of this variance to allow drive-through facilities between the building and streets will not be detrimental to the public, however it will allow drive-through operations to proceed expediently according to the design principles Chick-fil-A has researched and is implementing across the country to ensure that adequate stack is provided in drive-through lanes and that vehicles may enter, be served, and exit as quickly as possible without queue spill over into adjacent roadways. Chick-fil-A has a history and reputation for maintaining properties to very high standards and will be an asset to the community.
- d. The literal interpretation and strict application of the applicable provisions or requirements of this division would cause undue and unnecessary hardship.
 - Literal interpretation and strict application of the requirement that prohibits drive-through facilities between the building and street would prohibit Chick-fil-A from operating a drive-through on this parcel.
- e. The requested variance would be consistent with the spirit and purpose of this division and the comprehensive plan text.

The requested variance is the minimum necessary to afford relief, while maintaining the spirit and purpose of the DT-2 zoning district intent to provide a mixed-use community, with a focus on walkability and pedestrian access. Chick-fil-A proposes to locate drive-through facilities as far as possible from adjacent residential parcels and is proposing two patio areas near the street with sidewalk connectivity to the street to promote community and walkability.

VARIANCE #2 REQUEST: RELIEF FROM MAXIMUM BUILDING SETBACKS FROM HUGH HOWELL ROAD AND ROSSER TERRACE

Section 46-986 and Table 3.2 of the City of Tucker municipal code require a maximum building setback of 20 feet from Hugh Howell Road and Rosser Terrance in the DT-2 Downtown Corridor zoning district.

Criteria in support of Chick-fil-A's site layout proposing a building setback of 45 feet from Hugh Howell Road and 65 feet from Rosser Terrace:

a. By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of exceptional topographic and other site conditions (such as, but not limited to, floodplain, major stand of trees, steep slope), which were not created by the owner or applicant, the strict application of the requirements of this division would deprive the property owner of rights and privileges enjoyed by other property owners in the same zoning district.

Due to the geometry of the parcel and adjacent residential parcels, the proposed drive-through is located between the building and both Hugh Howell Road and Rosser Terrace. Chick-fil-A's dual lane drive-through design serves customers efficiently and prevents queue spill on to adjacent roadways. The dual lane drive-throughs are a minimum of 20 feet in width. In addition, Section 46-1166 requires that all drive-through restaurant facilities provide an additional bypass lane. The extra lane, in addition to a 5 feet landscape buffer prohibit movement of the building closer to Hugh Howell Road.

Likewise, the same drive-through lanes travel between the building and Rosser Terrace. The building setback is greater in this instance because a patio and sidewalk are provided for street connectivity.

The geometry of the parcel and the zoning designation of the adjacent parcels were not created by the owner or applicant. Strict application of these requirements will deprive Chick-fil-A of an efficient drive-through operation, which is enjoyed by nearby property owners who do have locations at street intersections and abut residential properties.

- b. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.
 - Request of this variance does not go beyond the minimum necessary to afford relief as drive-through design is adhering to City of Tucker ordinance requirements as much as possible. The proposed drive-through facilities are a minimum of 60 feet from residentially zoned adjacent properties and provide a bypass lane, in addition to the extra lane design employed by Chick-fil-A. Chick-fil-A is proposing two patios near the streets in keeping with the spirit and intent of the ordinance to promote community, walkability, and connection to the City streets.
- c. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.
 - Granting of this variance to exceed the maximum building setbacks will not be detrimental to the public, however it will allow drive-through operations to proceed expediently according to the design

principles Chick-fil-A has researched and is implementing across the country to ensure that adequate stack is provided in drive-through lanes and that vehicles may enter, be served, and exit as quickly as possible to avoid queue spill over into adjacent roadways. Chick-fil-A is providing two outdoor dining patios with sidewalk connectivity to the Hugh Howell streetscape to promote community and walkability.

- d. The literal interpretation and strict application of the applicable provisions or requirements of this division would cause undue and unnecessary hardship.
 - Literal interpretation and strict application of the requirement would severely diminish drive-through efficiency due to decreased stack length if the drive-through lanes were to be located at the interior of the site. Spatially, two drive-through lanes, a bypass lane, and landscape buffer will not fit into a 25 feet setback, so strict adherence would force diminished drive-through efficiency.
- e. The requested variance would be consistent with the spirit and purpose of this division and the comprehensive plan text.

The requested variance is the minimum necessary to afford relief, while maintaining the spirit and purpose of the DT-2 zoning district intent to provide a mixed-use community, with a focus on walkability and pedestrian access. Chick-fil-A proposes to locate drive-through facilities as far as possible from adjacent residential parcels and is proposing two patio areas near the street with sidewalk connectivity to the street to promote community and walkability.

VARIANCE #3 REQUEST: RELIEF FROM INTERPARCEL ACCESS

Section 46-989 of the City of Tucker municipal code requires inter-parcel access between abutting properties in the DT-2 Downtown Corridor zoning district

Criteria in support of Chick-fil-A's site layout, which does not provide inter-parcel access with abutting parcel.

- a. By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of exceptional topographic and other site conditions (such as, but not limited to, floodplain, major stand of trees, steep slope), which were not created by the owner or applicant, the strict application of the requirements of this division would deprive the property owner of rights and privileges enjoyed by other property owners in the same zoning district.
 - Due to the geometry of the parcel and adjacent residential parcels, the proposed drive-through is located between the building and both Hugh Howell Road and Rosser Terrace. Chick-fil-A's dual lane, isolated drive-through design serves customers efficiently and prevents queue spill on to adjacent roadways. Since the parcel is rectangular with the smallest length frontage along Hugh Howell Road, space does not exist for a drive to provide inter-parcel access outside of the drive-through lanes. Due to the geometry of the parcel, inter-parcel access would need to be achieved by allowing vehicles to enter the drive-through near the order pick up point, which would greatly dimmish drive-through efficiency. Inter-parcel access currently does not exist on this site. The constraints of the lot were not created by the owner or the applicant. Strict adherence to the requirement for inter-parcel access deprives Chick-fil-A of an efficient drive-through.
- b. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.
 - Request of this variance does not go beyond the minimum necessary to afford relief as drive-through design is adhering to City of Tucker ordinance requirements as much as possible. The proposed drive-through facilities are a minimum of 60 feet from residentially zoned adjacent properties and provide a bypass lane, in addition to the extra lane design employed by Chick-fil-A.
- c. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.
 - Granting of this variance for relief from inter-parcel access will not be detrimental to the public, however it will allow drive-through operations to proceed expediently according to the design principles Chick-fil-A has researched and is implementing across the country to ensure that adequate stack is provided in drive-through lanes and that vehicles may enter, be served, and exit as quickly as possible to avoid queue spill over into adjacent roadways. Inter-parcel access does not currently exist. Additionally, the current access off Rosser Terrace moves Chick-fil-A trips off Hugh Howell Road. If inter-parcel access were provided at the west adjacent parcel, vehicles bound for Chick-fil-A could enter the site from Hugh Howell Road through the adjacent parcel.

- d. The literal interpretation and strict application of the applicable provisions or requirements of this division would cause undue and unnecessary hardship.
 - Literal interpretation and strict application of the requirement would severely diminish drive-through efficiency due to decreased stack length if the drive-through lanes were to be located at the interior of the site. Spatially, two drive-through lanes, a bypass lane, and landscape buffer will not fit into the frontage provided on Hugh Howell Road, so strict adherence would force diminished drive-through efficiency.
- e. The requested variance would be consistent with the spirit and purpose of this division and the comprehensive plan text.

The requested variance maintains the spirit and purpose of the DT-2 zoning district intent through proposed patio areas and sidewalk and street connectivity for pedestrians. Relief from the requirement to provide inter-parcel access allows Chick-fil-A to operate an efficient drive-through that avoids queue migration to adjacent parcels and roadways.

VARIANCE #4 REQUEST: RELIEF FROM RESIDENTIAL TRANSITIONAL BUFFER

Section 46-1338 of the City of Tucker municipal code requires a 50 feet transitional buffer between residentially zoned properties and commercially zoned properties. The buffer must consist of natural or planted screening material. Chick-fil-A is requesting a variance to reduce the required buffer to 29 feet.

Criteria in support of Chick-fil-A's site layout, which reduces the required transitional buffer from 50 feet to 29 feet:

- a. By reason of exceptional narrowness, shallowness, or shape of a specific lot, or by reason of exceptional topographic and other site conditions (such as, but not limited to, floodplain, major stand of trees, steep slope), which were not created by the owner or applicant, the strict application of the requirements of this division would deprive the property owner of rights and privileges enjoyed by other property owners in the same zoning district.
 - The parcel width is only 50.9 feet where it is adjacent to a residentially zoned property at 2233 Dillard St. The 50 feet transitional buffer requirement precludes any use or improvement. The constraints of the lot were not created by the owner or the applicant. Strict adherence to the requirement for a 50 feet transitional buffer deprives Chick-fil-A of use of this portion of property, including a proposed access on Dillard St.
- b. The requested variance does not go beyond the minimum necessary to afford relief, and does not constitute a grant of special privilege inconsistent with the limitations upon other properties in the zoning district in which the subject property is located.
 - Request of this variance does not go beyond the minimum necessary as the minimum width needed for a driveway, 25 feet (with curb), is placed as far from the residential zoned property as possible, allowing a transitional buffer of 29 feet.
- c. The grant of the variance will not be materially detrimental to the public welfare or injurious to the property or improvements in the zoning district in which the subject property is located.
 - Granting partial relief from the transitional buffer requirement will not be detrimental to the public, as Chick-fil-A's building and drive-through operations are not located within 50 feet of residentially zoned properties. Additionally, Chick-fil-A will provide and maintain professional landscaping and screening according to City of Tucker municipal code Section 46-1338.
- d. The literal interpretation and strict application of the applicable provisions or requirements of this division would cause undue and unnecessary hardship.
 - Literal interpretation and strict application of the requirement would severely diminish use of the property to allow an access to Dillard St and the traffic signal at Cowan Rd.
- e. The requested variance would be consistent with the spirit and purpose of this division and the comprehensive plan text.

The requested variance maintains the spirit and purpose of the ordinance by providing a substantial residential buffer and locating the commercial building, drive-through facilities, and parking at least 50 feet from residentially zoned properties.

TRAFFIC IMPACT STUDY

Chick-fil-A # 04959 Tucker 4431 Hugh Howell Rd, Tucker, Georgia

March 15, 2022

Prepared for: Chick-fil-A, Inc.

RECEIVED CITY OF TUCKER

03/18/2022

Bowman

PLANNING & ZONING DEPARTMENT

SLUP-21-0004, CV-21-0002, CV-21-0003, CV-21-0004, CV-22-0006

TRAFFIC IMPACT STUDY

Chick-fil-A # 04959 Tucker 4431 Hugh Howell Rd, Tucker, Georgia

March 15, 2022

Prepared for: Chick-fil-A, Inc.

Bowman

Traffic Impact Study

Chick-fil-A # 04959 Tucker

4431 Hugh Howell Rd, Tucker, Georgia

Prepared March 15, 2022

Prepared for: Chick-fil-A, Inc. 5200 Buffington Road Atlanta, GA 30349 Phone: 404.214.9934

Prepared by:

Bowman

Bowman Consulting Group Certificate of Authorization License No. 30462 4450 W. Eau Gallie Blvd., Suite 144 Melbourne, FL 32934 Phone: (321) 255-5434

Fax: (321) 255-7751

Analysts: Daniela Jurado

Rodrigo Meirelles

Project Manager: Andrew Petersen, PE

03/15/2022 Bowman Job # 120005-01-049

Table of Contents

Executive Summary	. ii
1.Introduction	. 1
2.Background Information	. 1
Traffic Impact Analysis Methodology	
3.Roadway Network	
Intersection Characteristics	.2
4.Data Collection	. 4
5.Traffic Forecast and Background Traffic	
6.Trip Generation	.5
7.Trip Distribution	
8.Turn Lane Warrant Analysis	
9.Capacity Analysis	
Capacity Analysis Comparison – No Build vs Build Conditions (Year 2023)	
Proposed Improvements	
Capacity Analysis Comparison – No Build vs Build Improved Conditions	
Queueing Analysis	
10.Conclusions and Recommendations	
List of Figures	
Figure 1. Site location.	. 1
Figure 2. Trip Distribution	
List of Tables	
Table 1 Historical AADT and Annual Growth Rates	
Table 2 Site Trip Generation	.5
Table 3 Right Turn Lane Warrant Criteria	. 6
Table 4 HCM Level of Service Criteria	.7
Table 5 2022 AM Peak Hour Capacity Analysis	.8
Table 6 2023 PM Peak Hour Capacity Analysis	.9
Table 7 2022 Morning Peak Hour Capacity Analysis Comparison No Build vs Improved Conditions	10
Table 8 2022 Evening Peak Hour Capacity Analysis Comparison No Build vs Improved Conditions	
3 4,44 4 4	

Appendices

Appendix A: Site Plan

Appendix B: Scope/Methodology

Appendix C: Traffic Counts

Appendix D: Traffic Volume and Traffic Distribution Exhibits

Appendix E: Chick-Fil-A Trip Generation Assessment

Appendix F: Capacity Analysis Reports

Executive Summary

This report summarizes the findings of the Traffic Impact Study performed by Bowman Consulting (Bowman) for the proposed 4,989 SF Chick-fil-A development with 40 Car Stack Chick-fil-A development to be located at the Southwest corner of the intersection of Hugh Howell Rd and Rosser Terrace in the City of Tucker, Georgia.

Access to the site will be provided by one (1) right-in only driveway along Rosser Terrace and one (1) full-access driveway along Dillard St.

The purpose of this study is threefold: (i) to determine the number of expected trips generated by the proposed site; (ii) to determine the potential impact, if any, of the proposed development on the surrounding roadway network; and (iii) to propose improvements to mitigate the impact of the proposed development, if required.

A Traffic Impact Analysis Methodology Statement was prepared and shared with representatives from the City of Tucker and the Georgia Department of Transportation.

Turning movement counts were collected for the morning and evening peak hours at the intersections of Hugh Howell Rd & Cowan Rd, Hugh Howell Rd & Rosser Terrace, Hugh Howell Rd & Tucker Industrial Rd, and Cowan Rd & Dillard St.

Based on the results of the trip generation assessment prepared by Bowman Consulting, the proposed development is expected to generate a total of 261 trips during the morning peak hour and 285 trips during the evening peak hour. It is anticipated that during the morning peak hour 128 of these are existing trips, the remaining 133 are expected to be primary trips. During the evening peak hour, it is anticipated that 143 are existing trips and 142 are new trips.

For the purposes of this analysis, it is anticipated that the proposed development will be constructed and fully operational by the year 2023.

The following scenarios were evaluated as part of this study: 2023 No Build, 2023 Build and 2023 Build with Improvements.

A Turn Lane Warrant Analysis was conducted based on the City of Tucker Code of Ordinances Sec. 22-284 - Access Management. The results show a right turn lane is warranted at the eastbound approach of the intersection of Hugh Howell Rd and Rosser Terrace.

Capacity Analyses comparison No Build Vs Build conditions were conducted for the analysis intersections to identify areas impacted by the proposed development. The results indicate the following:

- <u>During the morning peak hour:</u> all intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions. No changes in LOS and minimal increases in delays are expected on all approaches of the analysis intersection.
- <u>During the evening peak hour:</u> all intersections are projected to operate at an acceptable overall LOS C or better during the No Build and Build Conditions.

Traffic Impact Study

Chick-fil-A # 04959 Tucker

Page iii

The northbound approach of the intersection of Hugh Howell Rd with Cowan Rd is expected to degrade from LOS E under No Build Conditions to LOS F under Build Conditions, with an increase in delay of 10.6 seconds.

Based on the results of the capacity and turn lane warrant analysis the following improvements are proposed:

- Optimize signal timings at Intersection of Hugh Howell Rd & Cowan Rd during evening Peak Hour.
- Provide an eastbound right-turning lane at the intersection of Hugh Howell Rd & Rosser Terrace.

Capacity Analyses comparison No Build Vs Build Improved conditions were conducted for the analysis intersections to evaluate the proposed improvements. The results indicate the following:

- <u>During the morning peak hour</u>: The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions. All approaches and turning movements are expected to maintain acceptable LOS.
- <u>During the evening peak hour</u>: The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions. All approaches and turning movements are expected to maintain acceptable LOS.

The intersection of Hugh Howell Rd and Cowan Rd/The Centre Driveway is expected to experience acceptable overall LOS C under Build Improved conditions. The northbound approach is anticipated to operate at LOS E under both No Build and Build Improved Conditions with no increase in delay. All other approaches and movements in this intersection are anticipated to operate at acceptable LOS D or better under Build Improved Conditions.

Based on the results of the capacity, turn lane and queueing analysis, the proposed Chick-Fil-A at 4431 Hugh Howell Rd, Tucker, GA is not expected to adversely impact the surrounding roadway network provided the proposed improvements mentioned on this report.

1. Introduction

This report summarizes the findings of the Traffic Impact Study performed by Bowman Consulting (Bowman) for the proposed Chick-fil-A development to be located at the Southwest corner of the intersection of Hugh Howell Rd and Rosser Terrace in the City of Tucker, Georgia.

The purpose of this study is threefold: (i) to determine the number of expected trips generated by the proposed site; (ii) to determine the potential impact, if any, of the proposed development on the surrounding roadway network; and (iii) to propose improvements to mitigate the impact of the proposed development, if required.

2. Background Information

The proposed development entails a 4,989 SF Chick-fil-A development with 40 Car Stack to be constructed at 4431 Hugh Howell Rd, in the City of Tucker, Georgia. **Figure 1** depicts the site location.

Figure 1. Site location.

Access to the development will be provided by one (1) right-in only driveway along Rosser Terrace and one (1) full-access driveway along Dillard St, no access driveways are proposed on Hugh Howell Rd. The latest Concept Plan is presented in **Appendix A**.

Traffic Impact Analysis Methodology

A Traffic Impact Analysis Methodology Statement was prepared and shared with representatives from the City of Tucker and the GDOT DeKalb County Division. A copy of the approved Traffic Impact Analysis Methodology Statement and proof of the coordination is contained in **Appendix B.**

To assess the traffic operation at the study Intersections, the following tasks were undertaken:

- Turning movement counts were collected during an average weekday for the morning (7:00 AM 9:00 AM) and evening (4:00 PM 6:00 PM) peak periods.
- Trip generation Assessment for Chick-Fil-a (CFA) facilities.
- Trip Distribution for the proposed development.
- Capacity and queuing analyses at study intersections.

3. Roadway Network

Hugh Howell Rd (GA 236): Within the identified study area is a State-maintained four-lane Minor Arterial according to the Georgia Department of Transportation State Functional Classification Map Online. Hugh Howell Rd has a continuous two-way left-turn lane (TWLTL), a southeast-northwest alignment and a posted speed limit of 45 miles per hour.

Rosser Terrace: Within the identified study area is a city-maintained two-lane undivided roadway identified as a Local Road according to the City of Tucker 2019, Strategic Transportation Master Plan. Rosser Terrace has a north-south alignment and a posted speed limit of 25 miles per hour.

Tucker Industrial Rd: Within the identified study area is a city-maintained two-lane undivided roadway identified as a Local Road according to the City of Tucker Strategic 2019, Transportation Master Plan. Tucker Industrial Rd has a north-south alignment with a posted speed limit of 35 miles per hour.

Cowan Rd: Within the identified study area is a city-maintained two-lane undivided roadway identified as a Local Road according to the City of Tucker 2019, Strategic Transportation Master Plan. Cowan Rd has a northeast-southwest alignment with a posted speed limit of 25 miles per hour.

Dillard St: Within the identified study area is a city-maintained two-lane undivided roadway identified as a Local Road according to the City of Tucker 2019, Strategic Transportation Master Plan. Dillard St has a north-south alignment with a posted speed limit of 25 miles per hour.

Intersection Characteristics

1. Intersection of Hugh Howell Rd and Rosser Terrace/Fuller Way

This intersection is currently a four-legged unsignalized intersection where Hugh Howell Rd has a southeast-northwest alignment and Rosser Terrace and Fuller way have a north-south alignment.

The northwest approach (Hugh Howell Road eastbound) consists of an exclusive through lane, one shared through/right-turn lane and a continuous TWLTL. The southeast approach (Hugh Howell Road westbound) consists of two exclusive through lanes, one exclusive right-turn lane and a continuous TWLTL. The northbound approach (Rosser Terrace) consists of one shared left-turn/through/right-turn lane. The southbound approach (Fuller Way) consists of one shared left-turn/through/right-turn lane.

2. Intersection of Hugh Howell Rd and Cowan Rd/The Centre Driveway

This intersection is currently a four-legged signalized intersection where Hugh Howell Rd has a southeast-northwest alignment and Cowan Rd has a northeast-southwest alignment.

The northwest approach (Hugh Howell Road eastbound) consists of one exclusive left-turn lane, one exclusive through lane, and one shared through/right-turn lane. The southeast approach (Hugh Howell Road westbound) consists of one exclusive left-turn lane, two exclusive through lanes, and one exclusive right-turn lane. The southwest approach (Cowan Road Northbound) consists of one shared left-turn/through/right-turn lane. The northeast approach (Publix Driveway southbound) consists of one exclusive left-turn lane, and one shared through/right-turn lane.

3. Intersection of Hugh Howell Rd and Tucker Industrial Rd

This intersection is currently a four-legged signalized intersection where Hugh Howell Rd has an east-west alignment and Tucker Industrial Rd has a north-south alignment.

The eastbound and westbound approaches consist of one exclusive left-turn lane, one exclusive through lane, and one shared through/right-turn lane. The northbound and southbound approaches have one shared left-turn/through/right-turn lane.

4. Intersection of Cowan Rd & Dillard St

This intersection is currently a three-legged unsignalized intersection where Hugh Howell Rd has a northeast-southwest alignment and Dillard St has a north-south alignment.

The northeast approach consists of a single lane with left-turn and through movements allowed. The southwest approach consists of a single lane with through and right-turn movements allowed. The northbound approach consists of a single lane with left-turn and right-turn movements allowed.

Proposed conditions.

As mentioned before, access to the development will be provided by one (1) right-in driveway along Rosser Terrace and one (1) full-access driveway along Dillard St. No access is proposed on Hugh Howell Road.

4. Data Collection

For the purposes of this study the following data was collected:

- Inspections were conducted to obtain an inventory of existing roadway geometry, traffic control devices, and location of existing and proposed driveways.
- Published GDOT AADT counts and functional classification information.
- Turning movement counts were collected at the following intersections:
 - Hugh Howell Rd and Cowan Rd
 - Hugh Howell Rd and Rosser Terrace
 - Hugh Howell Rd and Tucker Industrial Rd
 - Cowan Rd & Dillard St

The traffic counts were completed during an average weekday, Tuesday, June 15, 2021, for the intersections of Hugh Howell Rd with Cowan Rd, Rosser Terrace, and Tucker Industrial Rd, and on Tuesday, March 1, 2022, for the intersection of Cowan Rd with Dillard St for the morning (7:00 AM - 9:00 AM) and evening (4:00 PM - 6:00 PM) peak periods. The turning movement counts are presented in **Appendix C**.

5. Traffic Forecast and Background Traffic

For the purposes of this analysis, it is anticipated that the proposed development will be constructed and fully operational by the year 2023. The following scenarios were evaluated as part of this study:

- Future Conditions (2023) without the proposed development (No Build)
- Future Conditions (2023) with the proposed development (Build)
- Improved Future Conditions (2023) with the proposed development (Build with Improvements)

To develop the 2022 and the 2023 traffic volumes, the first step was to determine a background growth rate applicable for the study area roadway segments. For each roadway segment, the annual growth rate was calculated using the historical AADT information provided by the GDOT Average Annual Daily Traffic & Historical Counts 2015-2019 information. A 0.5% minimum average annual growth rate was used for all traffic in the study area.

The historical study area roadway AADT information, as well as the applied growth rates utilized for the analysis, are presented in **Table 1**.

Table 1 Historical AADT and Annual Growth Rates

Roadway	From	to	2015	2016	2017	2018	2019	2016	2017	2018	2019	Avg Growth rate	Applied Growth rate
Hugh Howell Rd	Lawrenceville Hwy	Mountain Industrial Blvd	21,700	22,400	25,600	25,600	24,400	3.2%	14.3%	0.0%	-4.7%	3.2%	3.2%
Rosser Terrace	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Tucker Industrial Rd	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Cowan Rd	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Dillard St	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%

Source: GDOT Average Annual Daily Traffic & Historical Counts 2015-2019

The growth rates presented in **Table 1** were applied to the 2021 Turning Movement Counts to develop the 2022 Existing Volumes. The 2022 Existing Traffic Volumes are presented in **Appendix D**, **Exhibit 1**.

The 2023 No Build Traffic Volumes were developed applying one year growth to the 2022 Existing Traffic Volumes, see **Exhibit 2** in **Appendix D.**

6. Trip Generation

The applicant is proposing to develop the site with the following land uses generating site traffic:

• 4,989 SF Chick-fil-A Restaurant with drive-thru window (Proposed)

Considering Chick-fil-A fast-food restaurants generate larger number of trips than ITE comparable land uses. Bowman conducted a Trip Generation Assessment based on trip generation data provided by the Atlanta Department of Transportation for three similar Chick-fil-A facilities. The trip generation assessment is presented **Appendix E**.

Table 2 displays the trip generation for the proposed development and includes the morning and evening peak hour.

Table 2 Site Trip Generation

Land Use	Land Use	AADT of Adjacent		Trips (1) Period	Peak	Hour T	rips ⁽²⁾	F	ass by	3)		Primary	,
Land Ose	Code ⁽¹⁾	Street	Daily I rips ··· Feri	renoa	ln	Out	Total	In	Out	Total	In	Out	Total
Fast Food restaurant	934	24,400	2,350	AM	133	128	261	65	63	128	68	65	133
with Drive thru	734	24,400	2,350	PM	148	137	285	74	69	143	74	68	142

(1) Based on the Institute of Transportation Engineers Trip Generation, 10th Edition

(2) Based on Bowman 2021 Trip Generation Assessment for Chick-Fil-A facilities

(3) Pass-By rates of 49% were extracted from the Institute of Transportation Engineers Trip Generation Handbook, 3rd Edition

The proposed development is expected to generate a total of 261 trips during the morning peak hour and 285 trips during the evening peak hour. It is anticipated that during the morning peak hour 128 of these are existing trips, the remaining 133 are expected to be primary trips. During the evening peak hour, it is anticipated that 143 are existing trips and 142 are new trips.

7. Trip Distribution

The proposed trip distribution for the site was developed based on the AADT information of the surrounding roadway network, he population and employment centers in the area, and the access conditions of the site. The trip distribution for this site is presented in **Figure 2**.

Figure 2. Trip Distribution

The Primary and Pass-By trip distributions are presented in **Exhibits 3** and **4** in **Appendix D**.

The Primary and Pass-By trips are presented in **Exhibits 5** and **6** in **Appendix D**.

The CFA Site Trips are presented in **Exhibits 7** in **Appendix D**.

The CFA Site Trips were added to the 2022 No Build Traffic Volumes to yield the 2022 Build Traffic Volumes presented in **Exhibit 8** in **Appendix D**.

8. Turn Lane Warrant Analysis

A Turn Lane Warrant Analysis was conducted based on the City of Tucker Code of Ordinances. Per Sec. 22-284 - Access Management, a deceleration lane shall be required at each project driveway or subdivision street entrance, as applicable, that meets either the average daily traffic (ADT) or right turning volumes shown in **Table 3**.

Table 3 Right Turn Lane Warrant Criteria

Main Road Speed Limit	2 Lanes on	Main Road	>2 Lanes on Main Road			
Iviaiii Koau Speeu Liiiiit	35-40 mph	>40 mph	35-40 mph	>40 mph		
Main Road ADT	8000	4000	12000	10000		
Daily Right Turning Volume	150	75	150	75		
Peak Hour Right Turning Volumes	15	7	15	7		

For driveways, right-turn lanes shall be required at all driveways where the right-turning volume exceeds 300 vehicles per day.

The following number of entering right turns are anticipated at each unsignalized intersection/driveway under 2023 Build Conditions:

- Hugh Howell Rd and Rosser Terrace
 - o AM Peak Hour 13
 - o PM Peak Hour 29
- Cowan Rd and Dillard St
 - o AM Peak Hour 29
 - o PM Peak Hour 35
- Rosser Terrace and Site Driveway 1
 - o AM Peak Hour 73
 - o PM Peak Hour 81

Based on the thresholds for a right-turn lane provided on the City of Tucker Code of Ordinances, a right turn lane is warranted at the eastbound approach of the intersection of Hugh Howell Rd and Rosser Terrace.

Based on the posted speed limit of Cowan Rd, Dillard St and Rosser Terrace (25 mph) a right-turn deceleration lane is not warranted as the threshold is not applicable for roads with speed limits smaller than 35 mph.

9. Capacity Analysis

The study intersections were analyzed for each scenario following the Highway Capacity Manual (HCM 6th edition) methodologies using the computer software Synchro 10. The analysis uses capacity, Level of Service, and control delay as the criteria for the performance of the driveways.

Capacity, as defined by the HCM, is a measure of the maximum number of vehicles in an hour that can travel through an intersection or section of roadway under typical conditions. Level of Service (LOS) is a marker of the driving conditions and perception of drivers while traveling during the given time period. LOS ranges from LOS A which represents free flow conditions, to LOS F which represents breakdown conditions.

Table 4 shows the LOS for unsignalized intersections as defined by the HCM.

Table 4 HCM Level of Service Criteria

	Unsignalized Intersections	Signalized Intersections					
Level of Service (LOS)	Average Control Delay	Average Control Delay					
	(sec/veh)	(sec/veh)					
А	≤10	≤10					
В	10 - 15	10 - 20					
С	15 - 25	20 - 35					
D	25 - 35	35 - 55					
E	35 - 50	55 - 80					
F	>50	>80					

Control delay is a measure of the total amount of delay experienced by an individual vehicle and includes delay related to deceleration, queue delay, stopped delay, and acceleration.

Table 4 displays the amount of control delay (in seconds per vehicle) that corresponds to the LOS for signalized and unsignalized intersections.

Capacity Analysis Comparison – No Build vs Build Conditions (Year 2023)

Capacity Analyses were conducted for the No Build and Build conditions (year 2023). The primary purpose for this approach was to compare the results to identify areas impacted by the proposed development. The capacity results are included in **Appendix F**.

The capacity results for morning peak hour are summarized in **Table 5**.

Table 5 2022 AM Peak Hour Capacity Analysis

	2023 CONDITIONS - (AM)		No Build Bui			ld	
	Intersection	Approach	Movement	DELAY (S)	LOS	DELAY (S)	LOS
		_ ··	L	8.3	Α	8.2	Α
			Т	0.0	Α	0.0	Α
		EB	TR	0.0	Α	0.0	Α
			Approach	0.5	Α	0.5	Α
			L	0.0	А	7.8	Α
1	Hugh Howell Rd & Rosser Terrace/Fuller Way		Т	0.0	Α	0.0	Α
		WB	R	0.0	Α	0.0	Α
			Approach	0.0	Α	0.6	Α
		NB	Approach	10.7	В	10.9	В
		SB	Approach	9.7	А	9.7	Α
		Intersection	-	0.6	А	0.9	Α
			L	4.4	Α	7.6	Α
		EB	Т	5.7	Α	9.7	Α
		EB	TR	5.7	Α	9.7	Α
			Approach	5.6	Α	9.5	Α
			L	4.9	Α	8.3	Α
	2 Hugh Howell Rd & Cowan Rd/The Centre Driveway	WB	Т	0.3	Α	0.4	Α
2		WB	R	0.0	Α	0.1	Α
			Approach	0.4	Α	0.6	Α
		NB	Approach	78.7	Е	73.5	Е
			L	68.2	Е	57.5	Е
		SB	TR	65.2	E	54.6	D
			Approach	66.3	Е	55.7	Е
		Intersection	-	8.3	Α	13.6	В
			L	100.8	F	96.0	F
			Т	0.3	Α	0.3	Α
		EB	TR	0.3	Α	0.3	Α
			Approach	1.6	Α	2.1	Α
			L	102.5	F	102.5	F
3	Hugh Howell Rd & Tucker Industrial Rd	WD	Т	5.2	Α	5.6	Α
		WB	TR	5.2	Α	5.6	Α
			Approach	9.7	Α	9.9	Α
		NB	Approach	74.8	Е	74.6	Е
		SB	Approach	67.0	Е	66.7	Е
		Intersection	-	13.2	В	13.5	В
		EB	Approach	0.0	Α	0.0	Α
4	Cowan Rd & Dillard St	WB	Approach	0.9	Α	3.4	Α
-	oowan Nu a Dinara St	NB	Approach	8.9	Α	10.1	В
		Intersection	-	1.7	Α	5.7	Α

Extracted from Synchro HCM 6th Edition

Based on the results of the capacity analysis during the morning peak hour, all intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions.

The northbound and southbound approaches of the intersection of Hugh Howell Rd and Cowan Rd are expected to operate at LOS E under both No Build and Build Conditions. The northbound and southbound approaches of the intersection of Hugh Howell Rd and Tucker Industrial Rd are expected to operate at LOS E under both No Build and Build Conditions. The eastbound and westbound left-turning movements of the intersection of Hugh Howell Rd with Tucker Industrial Rd are expected to operate at a LOS F during both No Build and Build Conditions, minimal increases in delays are expected at the above-mentioned turning movements and approaches.

The capacity results for evening peak hour are summarized in **Table 6**.

Table 6 2023 PM Peak Hour Capacity Analysis

2023 CONDITIONS - (PM)	No Build		Build			
Intersection	Approach	Movement	DELAY (S)	LOS	DELAY (S)	LOS
		L	8.3	Α	8.2	Α
		Т	0.0	Α	0.0	Α
	EB	TR	0.0	Α	0.0	Α
		Approach	0.2	Α	0.2	Α
		L	9.1	Α	9.6	А
Hugh Howell Rd & Rosser Terrace/Fuller Way		Т	0.0	Α	0.0	Α
	WB	R	0.0	Α	0.0	Α
		Approach	0.0	Α	0.7	Α
	NB	Approach	15.2	С	16.7	С
	SB	Approach	10.2	В	10.1	В
	Intersection		0.5	А	0.8	Α
		L	9.3	Α	13.7	В
	FD	Т	16.7	В	24.5	С
	EB	TR	16.7	В	24.5	С
		Approach	15.9	В	23.4	С
		L	12.1	В	18.1	В
Hugh Howell Rd & Cowan Rd/The Centre Driveway		Т	0.4	Α	0.5	Α
	, WB	R	0.2	Α	0.2	Α
		Approach	1.1	Α	1.7	Α
	NB	Approach	74.2	Е	84.8	F
		L	57.6	Е	48.1	D
	SB	TR	56.1	Е	46.4	D
		Approach	56.7	Е	47.1	D
	Intersection	-	17.6	В	24.3	С
		L	117.2	F	108.3	F
		Т	1.7	Α	1.8	Α
	EB	TR	1.7	Α	1.8	Α
		Approach	2.1	Α	2.4	Α
		L	104.4	F	104.4	F
Hugh Howell Rd & Tucker Industrial Rd		Т	8.0	Α	8.4	Α
	WB	TR	8.0	Α	8.4	Α
		Approach	15.0	В	15.3	В
	NB	Approach	77.6	Е	77.9	Е
	SB	Approach	59.6	Е	59.2	Е
	Intersection	-	14.6	В	14.8	В
	EB	Approach	0.0	Α	0.0	Α
Occurry Del & Dillocal Of	WB	Approach	1.7	Α	3.2	Α
Cowan Rd & Dillard St	NB	Approach	9.4	А	11.0	В
	Intersection		1.7	A	4.7	Α

Extracted from Synchro HCM 6th Edition

Based on the results of the capacity analysis during the evening peak hour, all intersections are projected to operate at an acceptable overall LOS C or better during the No Build and Build Conditions.

The northbound approach of the intersection of Hugh Howell Rd with Cowan Rd is expected to degrade from LOS E under No Build Conditions to LOS F under Build Conditions, with an increase in delay of 10.6 seconds.

The northbound and southbound approaches of the intersection of Hugh Howell Rd and Tucker Industrial Rd are expected to operate at LOS E under both No Build and Build Conditions; the eastbound and westbound left-turning movements of the intersection of Hugh Howell Rd with Tucker Industrial Rd are expected to operate at a LOS F during both No Build and Build Conditions, minimal increases in delays are expected at the above-mentioned turning movements and approaches.

Proposed Improvements

Based on the results of the capacity analysis comparison between No Build and Build Conditions, the following improvements are proposed:

- Optimize signal timings at Intersection of Hugh Howell Rd & Cowan Rd during evening Peak Hour.
- Provide an eastbound right-turning lane at the intersection of Hugh Howell Rd & Rosser Terrace.

Capacity Analysis Comparison – No Build vs Build Improved Conditions

A Capacity Analyses comparison was conducted for the No Build and Build Improved conditions (year 2023). The primary purpose for this approach was to compare the results in order to evaluate the effect of the proposed improvements. The capacity results are included in **Appendix F**.

The capacity results for morning peak hour are summarized in **Table 7**.

Table 7 2022 Morning Peak Hour Capacity Analysis Comparison No Build vs Improved Conditions

2023 CONDITIONS - (AM)			No Bu	ild	Build Improved		
Intersection	Approach	Movement	DELAY (S)	LOS	DELAY (S)	LOS	
		L	8.3	Α	8.2	Α	
	EB	Т	0.0	Α	0.0	Α	
	EB	TR	0.0	Α	0.0	Α	
		Approach	0.5	Α	0.6	Α	
		L	0.0	Α	7.8	Α	
1 Hugh Howell Rd & Rosser Terrace/Fuller Way	WB	Т	0.0	Α	0.0	Α	
	WD	R	0.0	Α	0.0	Α	
		Approach	0.0	Α	0.6	Α	
	NB	Approach	10.7	В	10.9	В	
	SB	Approach	9.7	Α	9.7	Α	
	Intersection	-	0.6	Α	0.9	Α	

Extracted from Synchro HCM 6th Edition

Based on the results of the capacity analysis, during the morning peak hour, the intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under

Build Improved conditions. All approaches and turning movements are expected to maintain acceptable LOS.

The capacity results for evening peak hour are summarized in **Table 8**.

Table 8 2022 Evening Peak Hour Capacity Analysis Comparison No Build vs Improved Conditions

2023 CONDITIONS - (PM)			No Bu		Build Imp	proved
Intersection	Approach	Movement	DELAY (S)	LOS	DELAY (S)	LOS
		L	8.3	А	8.2	Α
	- FD	Т	0.0	Α	0.0	Α
	EB	TR	0.0	Α	0.0	Α
		Approach	0.2	Α	0.2	Α
		L	9.1	А	9.6	Α
1 Hugh Howell Rd & Rosser Terrace/Fuller Way	WB	Т	0.0	Α	0.0	Α
	WD	R	0.0	Α	0.0	Α
		Approach	0.0	Α	0.7	Α
	NB	Approach	15.2	С	16.7	С
	SB	Approach	10.2	В	10.1	В
	Intersection	-	0.5	Α	0.8	Α
		L	9.3	Α	13.2	В
	EB	Т	16.7	В	23.6	С
	LD	TR	16.7	В	23.5	С
		Approach	15.9	В	22.5	С
		L	12.1	В	17.4	В
	WB	Т	0.4	Α	0.5	Α
2 Hugh Howell Rd & Cowan Rd/The Centre Driveway	***	R	0.2	Α	0.2	Α
		Approach	1.1	Α	1.6	Α
	NB	Approach	74.2	E	74.1	E
		L	57.6	E	49.2	D
	SB	TR	56.1	E	47.4	D
		Approach	56.7	E	48.1	D
	Intersection	-	17.6	В	22.9	С

Extracted from Synchro HCM 6th Edition

Based on the results of the capacity analysis, during the evening peak hour, the intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions. All approaches and turning movements are expected to maintain acceptable LOS.

During the evening peak hour, the intersection of Hugh Howell Rd and Cowan Rd/The Centre Driveway is expected to experience acceptable overall LOS C under Build Improved conditions. The northbound approach is anticipated to operate at LOS E under both No Build and Build Improved Conditions with no increase in delay. All approaches and turning movements are expected to maintain acceptable LOS.

Queueing Analysis

The queue length of the turn lanes was analyzed to observe if it exceeded the storage length of the turn lanes. The queue length was extracted from the Synchro 10 HCM 6th Edition Reports

using the 95th Percentile Queue. The queue lengths are presented in **Appendix F. Table 9** summarizes the queue results.

Table 9 Queueing Analysis Comparison

				Available Storage (ft)	NO BUILD	NO BUILD	BUILD	BUILD	BUILD IMP	BUILD IMP
	Intersection Approach Movement				Queue (ft)					
4	Hugh Howell Rd & Rosser Terrace	EB	L	100	3	3	3	3	3	3
'	(Unsignalized)	WB	L	100	0	0	5	8	5	8
		EB	L	125	25	83	38	89		101
2	Hugh Howell Rd & Cowan Rd/The Centre Driveway (Signalized)	WB	L	115	12	m 26	17	m 28		m33
	(orginalized)	SB	L	100	48	128	42	125		117
3	Hugh Howell Rd & Tucker Industrial Rd	EB	L	150	20	m 11	m28	m 15		
3	(Signalized)	WB	L	100	79	#124	79	#124		
4	Cowan Rd & Dillard St (Unsignalized)	NB	Approach	-	3	3	20	23		

Extracted from Synchro10 HCM 6th Edition

Intersections 3 & 4 have Non-NEMA Phasing therefore were extracted from Synchro10 HCM 2000 Edition

Based on the 95th% queue results, for the morning peak hour, no storage lengths are exceeded with the inclusion of the proposed development.

Based on the 95th% queue results, for the evening peak hour the storage length of the southbound left-turn lane of the intersection of Hugh Howell Rd & Cowan Rd/The Centre Driveway is expected to be exceeded under No Build, Build and Build Improved Conditions, with no increase in queue length. During the evening peak hour, the westbound left-turn lane of the intersection of Hugh Howell Rd & Tucker Industrial Rd is expected to be exceeded under both No Build and Build Conditions, with no increase in queue length under Build Conditions.

10. Conclusions and Recommendations

Based on the results of the trip generation assessment prepared by Bowman Consulting, the proposed development is expected to generate a total of 261 trips during the morning peak hour and 285 trips during the evening peak hour. It is anticipated that during the morning peak hour 128 of these are existing trips, the remaining 133 are expected to be primary trips. During the evening peak hour, it is anticipated that 143 are existing trips and 142 are new trips.

The study found that based on the City of Tucker Code of Ordinances, a right turn lane is warranted at the eastbound approach of the intersection of Hugh Howell Rd and Rosser Terrace.

The results of the No Build Vs Build conditions capacity analysis comparison indicate the following:

- <u>During the morning peak hour:</u>
 All intersections are projected to operate at an acceptable overall LOS B or better during the No Build and Build Conditions. No changes in LOS and minimal increases in delays are expected on all approaches of the analysis intersection.
- During the evening peak hour:

^{#95}th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

For queue given in term of vehicles one vehicle was assumed equal to 25 ft (Including space in between vehicles).

All intersections are projected to operate at an acceptable overall LOS C or better during the No Build and Build Conditions.

The northbound approach of the intersection of Hugh Howell Rd with Cowan Rd is expected to degrade from LOS E under No Build Conditions to LOS F under Build Conditions, with an increase in delay of 10.6 seconds.

The following improvements are proposed:

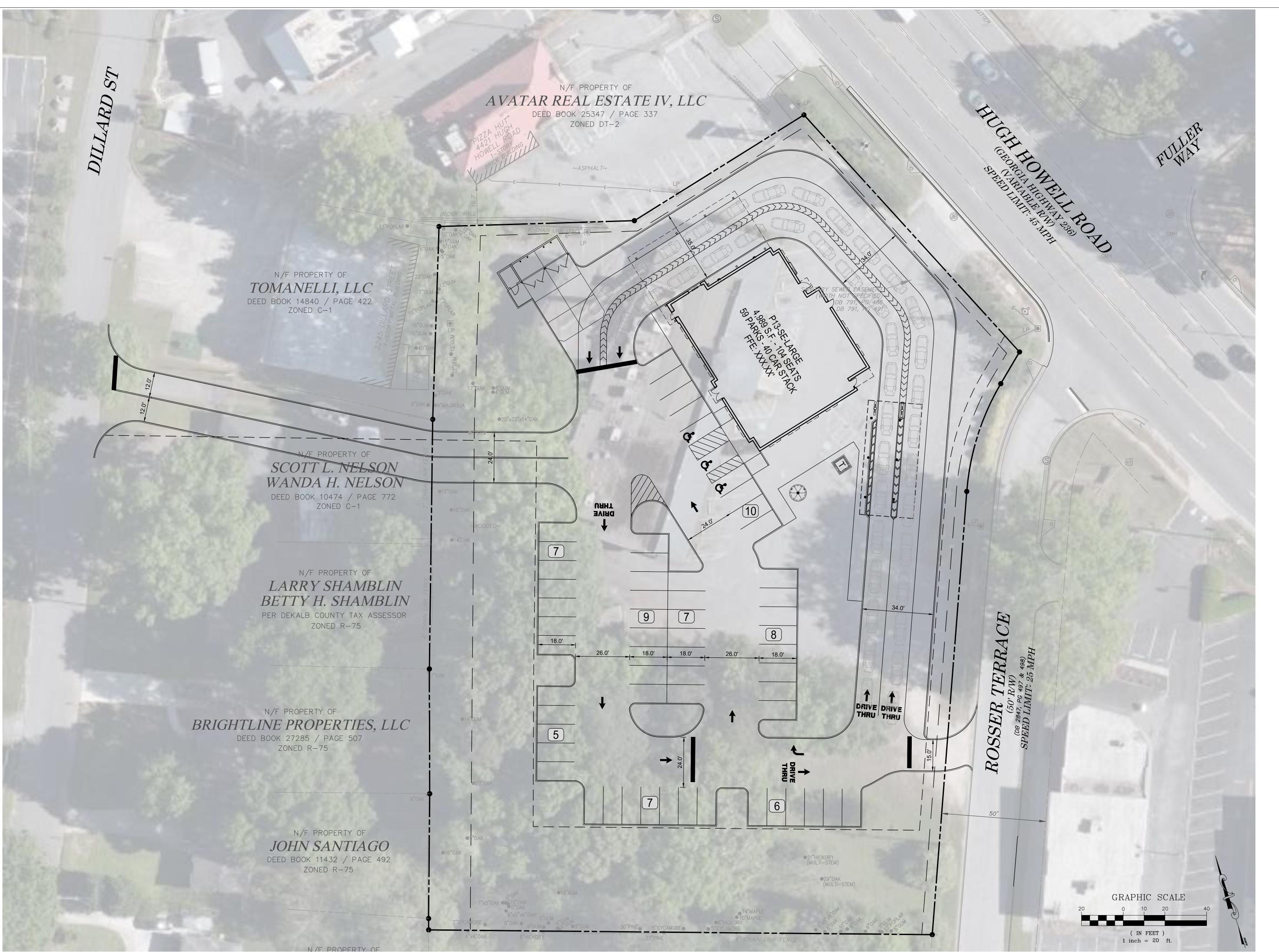
- Optimize signal timings at Intersection of Hugh Howell Rd & Cowan Rd during evening Peak Hour.
- Provide an eastbound right-turning lane at the intersection of Hugh Howell Rd & Rosser Terrace.

The results of the No Build Vs Build Improved conditions capacity analysis indicate the following:

• During the morning peak hour:

The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions. All approaches and turning movements are expected to maintain acceptable LOS.

• During the evening peak hour:


The intersection of Hugh Howell Rd and Rosser Terrace is expected to experience acceptable overall LOS A under Build Improved conditions. All approaches and turning movements are expected to maintain acceptable LOS.

The intersection of Hugh Howell Rd and Cowan Rd/The Centre Driveway is expected to experience acceptable overall LOS C under Build Improved conditions. The northbound approach is anticipated to operate at LOS E under both No Build and Build Improved Conditions with no increase in delay. All other approaches and movements in this intersection are anticipated to operate at acceptable LOS D or better under Build Improved Conditions.

Based on the results of the capacity, turn lane and queueing analysis, the proposed Chick-Fil-A at 4431 Hugh Howell Rd, Tucker, GA is not expected to adversely impact the surrounding roadway network provided the proposed improvements mentioned on this report.

APPENDIX A

Chick-fil-A 5200 BUFFINGTON RD Atlanta, Georgia 30349-2998

HICK-FIL-A LO TUCKER FSU 5 HUGH HOWELL ROAD

FSU#04959

BUILDING TYPE / SIZE: P13-SE-LRG

REVISION SCHEDULE

NO. DATE DESCRIPTION

CONSULTANT PROJECT # 120005-01-049

ISSUED FOR PERMIT

DATE February 14, 2022

DRAWN BY BCG

Information contained on this drawing and in all digital files produced for above named project may not be reproduced in any manner without express written or verbal consent from authorized project representatives.

SHEET

DILLARD ST ACCESS EXHIBIT

EX-1

APPENDIX B

TRAFFIC IMPACT STUDY CHICK-FIL-A, TUCKER, GA SCOPING/METHODOLOGY STATEMENT

Scoping Me	eeting Date:	Electronic Coo	rdination	
Applicant's	Consultant:	Bowman Cons	ulting Group	
Applicant's	Contact informa	ation:	Andrew J Petersen (3	321 -270 - 8987 / apetersen@bowman.com)
			Daniela lunada (224	270 0077 / Hunsda Observator 2000)
			Daniela Jurado (321 -	-270 - 8977 / djurado@bowman.com)
(1) LOCATI	ON OF PROPOSE	D PROJECT:	4431	Hugh Howell Rd, Tucker, GA 30084, See Figure 1.
	Municipality:		City of Tucker, GA	
	County		DeKalb County	
(2) DESCRI	PTION OF PROPO	SED PROJECT:		
(2) DESCRI	The proposed de Hugh Howell Rd Terrace.	velopment comp in the city of Tucl	ker, Georgia. Access to th	Fast-food restaurant with drive-thru window with 44 car stack, located at 4431 ne development will be provided by one (1) full-access driveway along Rosser
	· -		ted from the Institute of is presented in Figure 2 .	Transportation Engineers 10th Edition. The trip generation is presented in Tabl
(3) PURPO	impact, if any, of Capacity analyse warrant analyses	the study is three the proposed de s will be prepared s will be complete	evelopment on the roadw d for the No Build, Build	umber of trips generated by the proposed site; to determine the potential vay network; to propose improvements, if required. conditions, and Build Conditions with Improvements (if required). Turn lane Hugh Howell Rd and Rosser Terrace. The results of the study will be summarized
(4) DEVELO	OPMENT SCHEDU	LE:		
	Anticipated Op	ening Date:	2	022
	Analysis Date:		2	022
(5) STUDY	-Hugh Howell R	d and Rosser Te	errace (Unsignalized In Idustrial Rd (Signalized d (Singalized Intersecti	Intersection)
(6) STUDY	AREA TYPE:	Urban	:x	Rural:
(7) ANAIY	SIS PERIODS AND	TIMES:		
(7) - 11 10 12 11	AM Peak hour		7:00 AM - 09:00 AM	
	PM Peak hour		4:00 PM - 06:00 PM	

(8) TRAFFIC ADJUSTMENT FACTORS:

(a) Seasonal Adjustment: To be determined upon coordination

(b) Annual Base Traffic Growth:

See Table 2

Source:

Approximate Growth average from AADT's

GDOT Traffic Count Data online

(9) OTHER PROJECTS WITHIN STUDY AREA TO BE ADDED TO BASE TRAFFIC:

To be determined upon coordination

(10) APPROVAL OF DATA COLLECTION ELEMENTS AND METHODOLOGIES:

Proposed Location	Period (Avg Day)	<u>Type</u>
-Hugh Howell Rd and Rosser Terrace	AM/PM	Turning Movement Counts
-Hugh Howell Rd and Tucker Industrial Rd	AM/PM	Turning Movement Counts
-Hugh Howell Rd and Cowan Rd	AM/PM	Turning Movement Counts

(11) CAPACITY/LOS ANALYSIS

<u>Location</u>	<u>Period (Avg Day)</u>	<u>Type</u>
-Hugh Howell Rd and Rosser Terrace	AM/PM	Synchro (HCS)
-Hugh Howell Rd and Tucker Industrial Rd	AM/PM	Synchro (HCS)
-Hugh Howell Rd and Cowan Rd	AM/PM	Synchro (HCS)

(12) ROADWAY IMPROVEMENTS/MODIFICATIONS BY OTHERS TO BE INCLUDED:

To be determine upon coordination

(13) OTHER NEEDED ANALYSES:

(a) Signal Warrant Analysis:

No

(b) Required Signal Phasing/Timing Modifications:

TBD

- (c) Analysis of the Need for Turning Lanes:
 - -Hugh Howell Rd and Rosser Terrace (Unsignalized Intersection)
- (d) Turning Lane Lengths:

95th Percentile Synchro Queue

(14) ADDITIONAL COMMENTS OR RECOMMENDATIONS RELATIVE TO THE SCOPE OF THIS PROJECT:

TRAFFIC IMPACT STUDY SCOPING/METHODOLOGY STATEMENT

TRAFFIC IMPACT STUDY SCOPING/METHODOLOGY STATEMENT

TABLE 1

Land Use	Land Use	Size	Daily Trips	Pariod	Peak Hour Trips		Pass by ⁽²⁾			Primary			
Lailu OSE	Code ⁽¹⁾	Size Daily Hips Fell	Fellou	In	Out	Total	ln	Out	Total	In	Out	Total	
Fact Food wasterment with Drive them.	024	4 000 CE	2.250	AM	102	99	201	50	49	99	52	50	102
Fast Food restaurant with Drive thru	934	4,989 SF	2,350	PM	85	78	163	43	39	82	42	39	81
(1) Based on the Institute of Transportation Engineers Trip Generation, 10th Edition													
(1) Pass-By rates of 49% for the AM Peak Hour and 50% for the PM Peak Hour were extracted from the ITE Trip Generation Handbook. 3rd Edition													

TABLE 2

Roadway	From	to	2015	2016	2017	2018	2019	2016	2017	2018	2019	Avg Growth rate	Applied Growth rate
Hugh Howell Rd	Lawrenceville Hwy	Mountain Industrial Blvd	21,700	22,400	25,600	25,600	24,400	3.2%	14.3%	0.0%	-4.7%	3.2%	3.2%
Rosser Terrace	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Tucker Industrial Rd	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%
Cowan Rd	N/A	N/A	-	-	-	-	-	-	-	-	-	No Data	0.5%

 $Source: Approximate\ Growth\ average\ from\ 2015-2019\ AADT's\ GDOT\ Traffic\ Count\ Database\ System\ (TCDS).$ https://gdottrafficdata.drakewell.com/publicmultinodemap.asp

A 0.5% minimum growth rate for the roads was assumed based on the City of Tucker population growth rate.

Rodrigo Meirelles

From: Ken Hildebrandt <KHildebrandt@Tuckerga.gov>

Sent: Wednesday, June 9, 2021 5:23 PM

To: Daniela Jurado

Cc: Andrew Petersen; Rodrigo Meirelles

Subject: [EXTERNAL] RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Yes, these will be a good representation.

KEN HILDEBRANDT, PE, PTOE CITY ENGINEER

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Wednesday, June 9, 2021 4:15 PM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>; Rodrigo Meirelles <rmeirelles@bowman.com>

Subject: [External]RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Good Afternoon Ken,

We received some trip generation information today of some CFA locations in the Great Atlanta area, average weekday (M-Th) information from 2 months in 2019 and February 2021 when school was in session. The locations are the following:

- 1- 2580 Piedmont Rd
- 2- 2340 N Druid Hills Rd
- 3- 1100 Northside Dr

Sincerely,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Sent: Wednesday, June 9, 2021 8:23 AM **To:** Daniela Jurado < djurado @bowman.com>

Cc: Andrew Petersen <apetersen@bowman.com>; Rodrigo Meirelles <<u>rmeirelles@bowman.com</u>>

Subject: [EXTERNAL] RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

What is the ADT on the street in Miami?

Is it a comparable site?

KEN HILDEBRANDT, PE, PTOE CITY ENGINEER

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Tuesday, June 8, 2021 2:21 PM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Cc: Andrew Petersen apetersen@bowman.com; Rodrigo Meirelles rmeirelles@bowman.com>

Subject: [External]RE: Chick-fil-A Tucker Methodology Coordination

Good Afternoon Ken,

For the trip generation of the CFA we have conducted a trip generation study for a CFA in the Miami Dade area. Is it possible for us to use this trip generation study results to evaluate the trip generation for this site?

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Daniela Jurado

Sent: Tuesday, June 8, 2021 8:47 AM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov> Subject: RE: Chick-fil-A Tucker Methodology Coordination

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Sent: Tuesday, June 8, 2021 8:36 AM

To: Daniela Jurado <djurado@bowman.com>

Subject: [EXTERNAL] Chick-fil-A Tucker Methodology Coordination

DeKalb County maintains our traffic signals. You may be able to get this information from Demetria Allen. dfchambliss@dekalbcountyga.gov

KEN HILDEBRANDT, PE, PTOE CITY ENGINEER

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado < djurado@bowman.com >

Sent: Tuesday, June 8, 2021 8:28 AM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov >; Rodrigo Meirelles < rmeirelles@bowman.com >; Courtney Smith

<<u>CSmith@Tuckerga.gov</u>>; Kylie Thomas <<u>kthomas@tuckerga.gov</u>>

Cc: Andrew Petersen <apetersen@bowman.com>

Subject: [External]RE: [External]RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Good Morning Ken,

Is there a way we can get the signal phasing and timings for the intersections of Hugh Howell Rd and Tucker Industrial Rd and Hugh Howell Rd and Cowan Rd?

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov >

Sent: Monday, June 7, 2021 3:21 PM

To: Daniela Jurado <<u>djurado@bowman.com</u>>; Rodrigo Meirelles <<u>rmeirelles@bowman.com</u>>; Courtney Smith

<<u>CSmith@Tuckerga.gov</u>>; Kylie Thomas <<u>kthomas@tuckerga.gov</u>>

Cc: Andrew Petersen <apetersen@bowman.com>

Subject: [EXTERNAL] RE: [External]RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

No further comments at this time.

KEN HILDEBRANDT, PE, PTOE **CITY ENGINEER**

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

💆 📴 🔠 🏲

From: Daniela Jurado < djurado@bowman.com >

Sent: Monday, June 7, 2021 3:18 PM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov >; Rodrigo Meirelles < rmeirelles@bowman.com >; Courtney Smith

<CSmith@Tuckerga.gov>; Kylie Thomas <kthomas@tuckerga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>

Subject: [External]RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Thank you Ken,

We will start working on the best locations to get this data collected. Besides the trip generation, is there any other comments on the proposed methodology?

Sincerely,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Sent: Monday, June 7, 2021 12:46 PM

To: Daniela Jurado djurado@bowman.com; Rodrigo Meirelles rmeirelles@bowman.com; Courtney Smith

<CSmith@Tuckerga.gov>; Kylie Thomas <kthomas@tuckerga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>

Subject: [EXTERNAL] RE: [External]RE: Chick-fil-A Tucker Methodology Coordination

Again, I think that a Chick fil-A is a different animal and is not accurately represented in this trip generation category.

KEN HILDEBRANDT, PE, PTOE **CITY ENGINEER**

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Monday, June 7, 2021 9:53 AM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>; Rodrigo Meirelles < rmeirelles@bowman.com>; Courtney Smith

<<u>CSmith@Tuckerga.gov</u>>; Kylie Thomas <<u>kthomas@tuckerga.gov</u>>

Cc: Andrew Petersen apetersen@bowman.com>

Subject: [External]RE: Chick-fil-A Tucker Methodology Coordination

Good Morning Ken,

Would it be possible for us to use the ITE mean values plus one standard deviation. That would leave the following trip generation:

Mean

Land Use	Land Use Code ⁽¹⁾	Size	Daily Trips	Period	Pea	ak Hour T	Pass by ⁽²⁾			
Lairu Ose	Land Use Code**	3126	Daily 111ps	renou	lin	Out	Total	ln	Out	To
Fast Food restaurant with Drive thru	934	4,989	1893	AM	103	98	201	50	48	9
rastroca residurant with Drive thru	239	4,303	1033	PM	8.5	78	163	42	36	6

- (1) Based on the Institute of Transportation Engineers Trip Generation, 10th Edition
- (1) Pass-By rates of 49% were extracted from the Institute of Transportation Engineers Trip Generation Handbook, 3rd Edition

Mean +1 std dev

Land Use	Land Use Code ⁽¹⁾	Size	Daily Trips	Period	Pea	ak Hour T	rips	Pass by ⁽²⁾			
Land ose	Land Ose Code	3126	Daily 111ps	renou	lin	Out	Total	ln	Out	To	
for a for all and a second a s	0.34	4,989	1893	AM	175	169	344	86	6.3	1.6	
Fast Food restaurant with Drive thru	934	4,303	1000	PM	131	121	252	64	59	12	

(1) Based on the Institute of Transportation Engineers Trip Generation, 10th Edition

(1) Pass-By rates of 49% were extracted from the Institute of Transportation Engineers Trip Generation Handbook, 3rd Edition

Would you agree with this approach?

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>

Sent: Monday, June 7, 2021 8:18 AM

 $\textbf{To:} \ \mathsf{Rodrigo} \ \mathsf{Meirelles} \\ & < \underline{\mathsf{rmeirelles}} \\ & \mathsf{bowman.com} \\ >; \ \mathsf{Courtney} \ \mathsf{Smith} \\ & < \underline{\mathsf{CSmith}} \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Kylie} \ \mathsf{Thomas} \\ \\ & \mathsf{Tuckerga.gov} \\ >; \ \mathsf{Tuckerg$

<kthomas@tuckerga.gov>

Cc: Daniela Jurado djurado@bowman.com">djurado@bowman.com; Andrew Petersen apetersen@bowman.com>

Subject: [EXTERNAL] Chick-fil-A Tucker Methodology Coordination

Rodrigo,

A Chick fil-A restaurant is rather unique and does not fit in the mold of Code 934 for a Fast Food Restaurant. Actual trip generation will be significantly higher. A more accurate estimate would be to provide counts at an existing comparably sized Chick fil-A.

You can call me at the number below with any questions.

KEN HILDEBRANDT, PE, PTOE CITY ENGINEER

M: 770-865-5645

E: khildebrandt@tuckerga.gov W: tuckerga.gov

From: Rodrigo Meirelles < rmeirelles@bowman.com>

Sent: Thursday, June 3, 2021 10:18 AM

To: Ken Hildebrandt < KHildebrandt@Tuckerga.gov>; Courtney Smith < CSmith@Tuckerga.gov>; Kylie Thomas

<kthomas@tuckerga.gov>

Cc: Daniela Jurado <djurado@bowman.com>; Andrew Petersen <apetersen@bowman.com>

Subject: [External]Chick-fil-A Tucker Methodology Coordination

Good Morning Ken, Courtney, and Kylie,

I am contacting you regarding a Chick-fil-A project at 4431 Hugh Howell Rd, Tucker, GA. The site will be replacing the existing Presbyterian Church. Attached you will find a Methodology Statement with the Trip Generation for this site and a Current Site Plan.

We want to schedule a meeting with the City of Tucker to verify that our methodology for this Traffic Impact Study is acceptable. Could you reply to this email with the best time for you to discuss this project?

Thank you in advance.

Sincerely,

RODRIGO MEIRELLES VAN VLIET

Engineer I | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934

O: (321) 270-8905

rmeirelles@bowman.com | bowman.com

Rodrigo Meirelles

From: Rodrigo Meirelles

Sent: Wednesday, June 9, 2021 10:48 AM

To: Mathis, Renaldo M

Cc: Daniela Jurado; Andrew Petersen

Subject: RE: Chick-fil-A Tucker Methodology Coordination - GDOT

That will work, thank you very much Renaldo. Can you please include Daniela Jurado (<u>djurado@bowman.com</u>) and Andrew Petersen (<u>apetersen@bowman.com</u>) to the meeting invite as well?

Sincerely,

RODRIGO MEIRELLES VAN VLIET

Engineer I | **BOWMAN**O: (321) 270-8905
rmeirelles@bowman.com

From: Mathis, Renaldo M < RMathis@dot.ga.gov>

Sent: Wednesday, June 9, 2021 10:35 AM

To: Rodrigo Meirelles < rmeirelles @bowman.com>

Subject: [EXTERNAL] RE: Chick-fil-A Tucker Methodology Coordination - GDOT

I will set the meeting on Microsoft teams for Tuesday at 1.

Thanks.

Renaldo M. Mathis

Civil Engineer II
Serving City of Atlanta & DeKalb County

District 7 Office of *Traffic Operations* 5025 New Peachtree Road Chamblee, GA, 30341 770.216.3993 office 404.655.8946 mobile

From: Rodrigo Meirelles < rmeirelles @bowman.com >

Sent: Wednesday, June 9, 2021 10:20 AM **To:** Mathis, Renaldo M <RMathis@dot.ga.gov>

Cc: Daniela Jurado <djurado@bowman.com>; Andrew Petersen <apetersen@bowman.com>

Subject: RE: Chick-fil-A Tucker Methodology Coordination - GDOT

Hello Renaldo,

Sorry for misspelling your name at first. Either one of these days will work for us. Let us know what time works best for you and your manager.

Thank you,

RODRIGO MEIRELLES VAN VLIET

Engineer I | **BOWMAN** O: (321) 270-8905

rmeirelles@bowman.com

From: Mathis, Renaldo M < RMathis@dot.ga.gov>

Sent: Wednesday, June 9, 2021 9:35 AM

To: Rodrigo Meirelles < rmeirelles @bowman.com >

Subject: [EXTERNAL] RE: Chick-fil-A Tucker Methodology Coordination - GDOT

Good morning Rodrigo,

I can set a meeting for sometime early next week if that works for you. I m going to speak with my manager to see what times work best based on the day you prefer. I'm thinking sometime Monday or Tuesday. How does these dates sound to you?

Thanks,

Renaldo M. Mathis

Civil Engineer II Serving City of Atlanta & DeKalb County

District 7 Office of *Traffic Operations* 5025 New Peachtree Road Chamblee, GA, 30341 770.216.3993 office 404.655.8946 mobile

From: Rodrigo Meirelles < rmeirelles @bowman.com >

Sent: Wednesday, June 9, 2021 9:12 AM

To: Mathis, Renaldo M <RMathis@dot.ga.gov>

Cc: Andrew Petersen <apetersen@bowman.com>; Daniela Jurado <djurado@bowman.com>

Subject: RE: Chick-fil-A Tucker Methodology Coordination - GDOT

Good Morning Ronaldo,

I wanted to follow up on my previous email and see if you received my previous email with the attached methodology for this project, and if there is any additional information you require for the TIA of this project.

Please do not hesitate to contact us.

Thank you in advance,

RODRIGO MEIRELLES VAN VLIET

Engineer I | BOWMAN

O: (321) 270-8905

rmeirelles@bowman.com

From: Rodrigo Meirelles

Sent: Thursday, June 3, 2021 2:06 PM

To: rmathis@dot.ga.gov

Cc: Andrew Petersen <apetersen@bowman.com>; Daniela Jurado <djurado@bowman.com>

Subject: Chick-fil-A Tucker Methodology Coordination - GDOT

Good Morning Ronaldo,

I am contacting you regarding a Chick-fil-A project at 4431 Hugh Howell Rd, Tucker, GA. The site will be replacing the existing Presbyterian Church. Attached you will find a Methodology Statement with the Trip Generation for this site and the most recent Site Plan.

We want to schedule a meeting with the GDOT to verify that our methodology for this Traffic Impact Study is acceptable. Could you reply to this email with the best time for you to discuss this project?

Thank you in advance.

Sincerely,

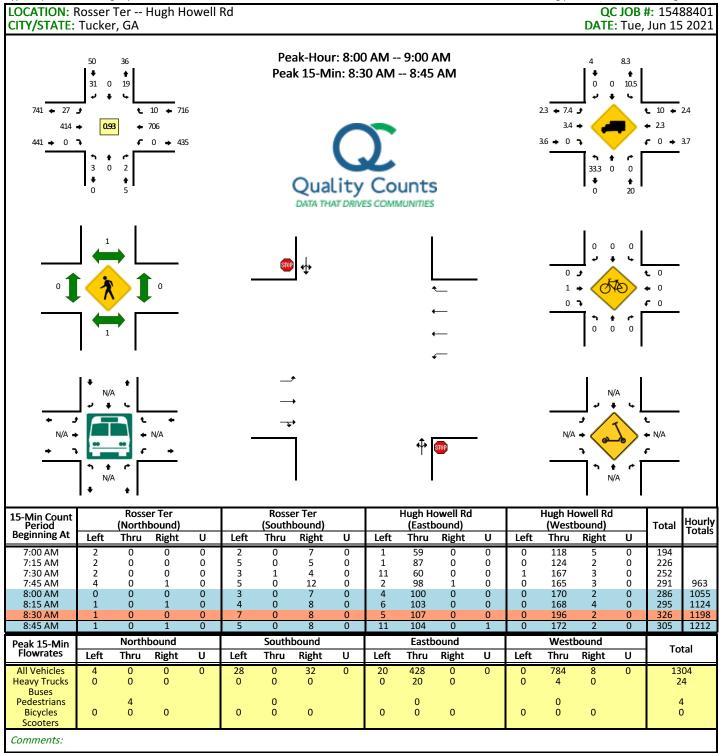
RODRIGO MEIRELLES VAN VLIET

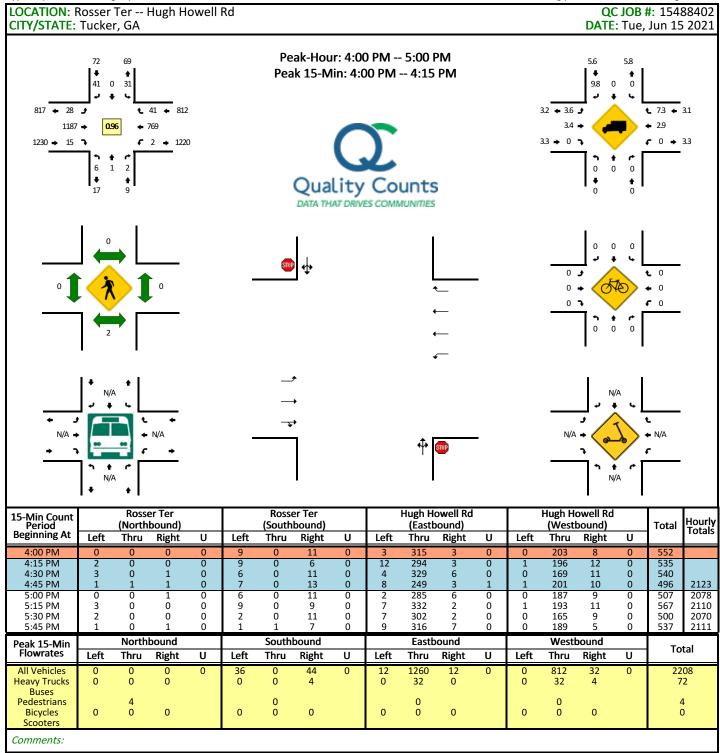
Engineer I | BOWMAN

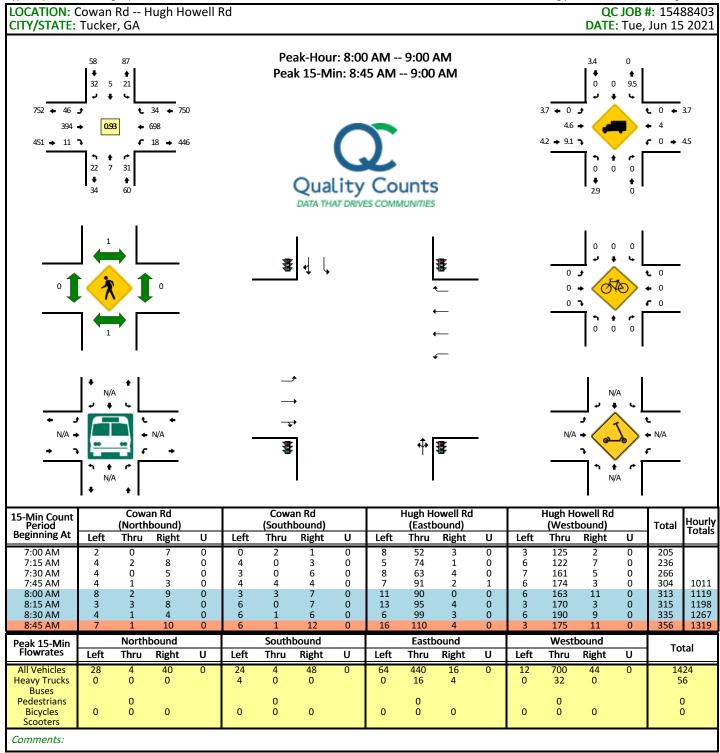
4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934

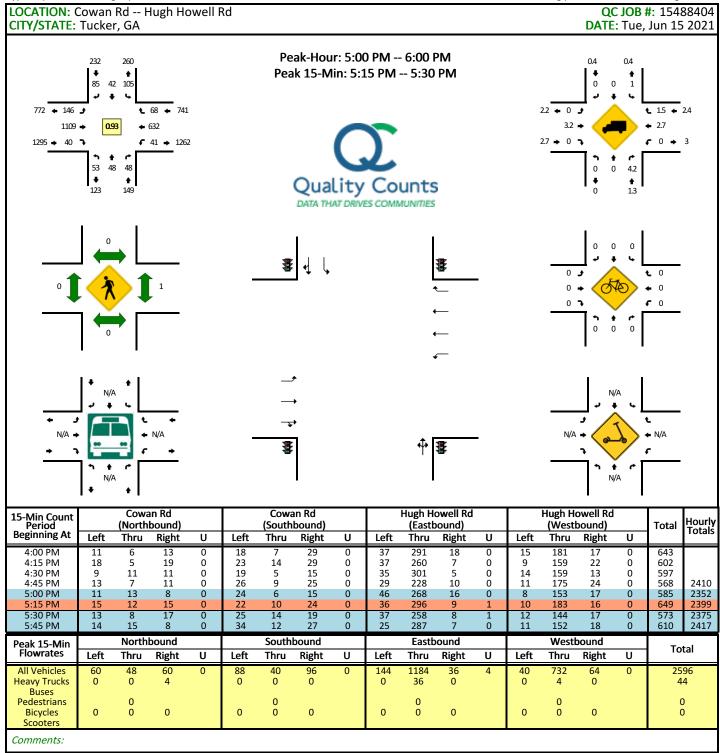
O: (321) 270-8905

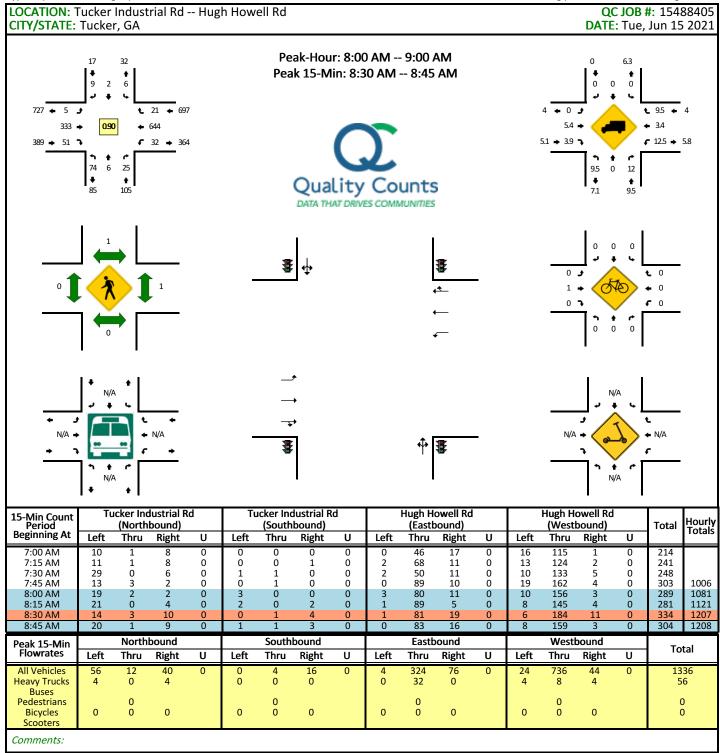
rmeirelles@bowman.com | bowman.com

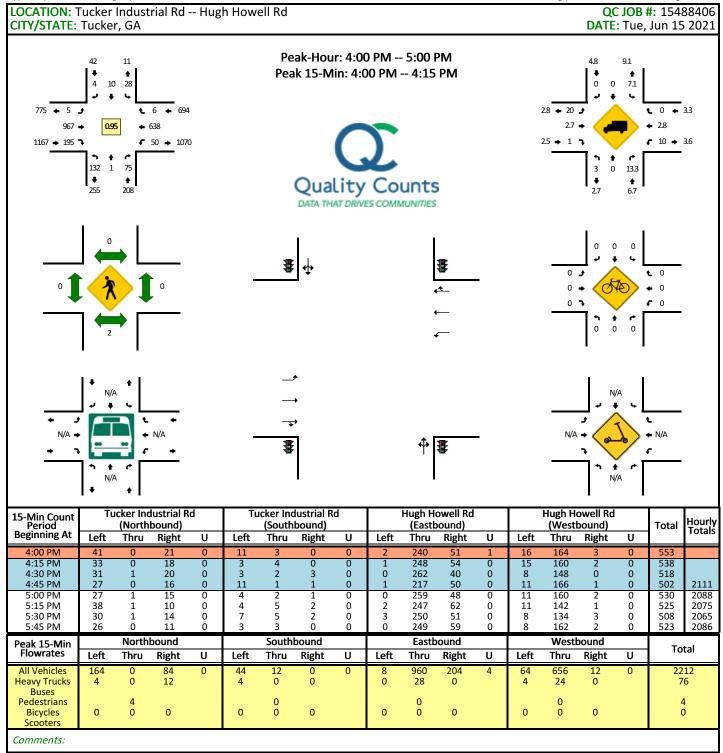





Georgia is a state of natural beauty. And it's a state that spends millions each year cleaning up litter that not only mars that beauty, but also affects road safety, the environment and the economy. Do your part - don't litter. How can you play an active role in protecting the splendor of the Peach State? Find out at http://keepgaclean.com/.




APPENDIX C



Project ID: 22-180036-001 Location: Dillard St & Cowan Rd City: Tucker

Groups Printed - Care PH Vans - Heavy Trucks

	Groups Printed - Cars, PU, Vans - Heavy Trucks Dillard St Dillard St Cowan Rd Cowan Rd																								
				bound						bound						oound					Westb				
Start Time	Left	Thru	Rgt	Uturn	Peds	App. Total	Left	Thru	Rgt	Uturn	Peds A	pp. Total	Left	Thru	Rgt	Uturn	Peds A	App. Total	Left	Thru	Rgt	Uturn	Peds A	pp. Total	
7:00 AM	1	0	5	0	1	6	0	0	0	0	0	0	0	13	0	0	0	13	2	3	0	0	0	5	24
7:15 AM	0	0	14	0	0	14	0	0	0	0	0	0	0	9	0	0	0	9	1	8	0	0	0	9	32
7:30 AM	0	0	7	0	1	7	0	0	0	0	0	0	0	8	0	0	0	8	4	7	0	0	0	11	26
7:45 AM	5	0	6	0	0	11	0	0	0	0	0	0	0	27	0	0	0	27	4	10	0	0	0	14	52
Total	6	0	32	0	2	38	0	0	0	0	0	0	0	57	0	0	0	57	11	28	0	0	0	39	134
8:00 AM	2	0	5	0	0	7	0	0	0	0	0	0	0	13	1	0	0	14	3	9	0	0	0	12	33
8:15 AM	2	0	4	0	0	6	0	0	0	0	0	0	0	14	0	0	0	14	1	20	0	0	0	21	41
8:30 AM	0	0	2	0	0	2	0	0	0	0	0	0	0	16	1	0	1	17	1	9	0	0	0	10	29
8:45 AM	0	0	4	0	0	4	0	0	0	0	0	0	0	10	0	0	0	10	2	13	0	0	0	15	29 132
Total	4	0	15	0	0	19	0	0	0	0	0	0	0	53	2	0	1	55	7	51	0	0	0	58	132
BREAK							•																		
4:00 PM	2	0	7	0	0	9	0	0	0	0	0	0	0	43	2	0	0	45	4	20	0	0	0	24	78
4:15 PM	0	0	6	0	1	6	0	0	0	0	0	0	0	44	1	0	1	45	3	15	0	0	0	18	69
4:30 PM	0	0	8	0	2	8	0	0	0	0	0	0	0	38	2	0	1	40	3	28	0	0	0	31	79
4:45 PM	1	0	10	0	0	11	0	0	0	0	0	0	0	23	1	0	0	24	5	26	0	1	0	32	67
Total	3	0	31	0	3	34	0	0	0	0	0	0	0	148	6	0	2	154	15	89	0	1	0	105	293
5:00 PM	0	0	5	0	1	5	0	0	0	0	0	0	0	26	1	0	0	27	7	28	0	0	2	35	67
5:15 PM	2	0	6	0	0	8	0	0	0	0	0	0	0	36	0	0	0	36	6	30	0	0	0	36	80
5:30 PM	0	0	12	0	0	12	0	0	0	0	0	0	0	35	2	0	0	37	7	20	0	0	0	27	76
5:45 PM	0	0	6	0	0	6	0	0	0	0	0	0	0	37	1	0	0	38	7	19	0	0	0	26	70
Total	2	0	29	0	1	31	0	0	0	0	0	0	0	134	4	0	0	138	27	97	0	0	2	124	293
Grand Total	15	0	107	0	6	122	l o	0	0	0	0	ol	0	392	12	0	3	404	60	265	0	1	2	326	852
-	12.3	0.0	87.7	0.0	4.9	122	0.0	0.0	0.0	0.0	0.0	U	0.0	97.0	3.0	0.0	0.7	404	18.4	81.3	0.0	0.3	0.6	320	652
Apprch % Total %			12.6			112		0.0	0.0		0.0	0.0					0.7	47.4					0.6	20.2	
Cars. PU. Vans	1.8 15	0.0	105	0.0		14.3 120	0.0	0.0	0.0	0.0	0.0	0.0	0.0	46.0 382	1.4 10	0.0	0.4	47.4 392	7.0 60	31.1 255	0.0	0.1	0.2	38.3 316	828
- , -,		-	98.1				_	•	-			~	•			-				255 96.2	-	-			
% Cars, PU, Vans	100.0	0.0	98.1	0.0		98.4 2	0.0	0.0	0.0	0.0		0.0	0.0	97.4 10	83.3	0.0		97.0 12	100.0	96.2	0.0	100.0		96.9	97.2 24
Heavy trucks		-					_	•	-			_	•			-						•		10	2.8
%Heavy trucks	0.0	0.0	1.9	0.0		1.6	0.0	0.0	0.0	0.0		0.0	0.0	2.6	16.7	0.0		3.0	0.0	3.8	0.0	0.0		3.1	2.8

Day: Tuesday Date: 3/1/2022

Project ID: 22-180036-001 Location: Dillard St & Cowan Rd City: Tucker

PEAK HOURS

Day: Tuesday Date: 3/1/2022

0.861

0.0

0 124

0

0.0

0.0 100.0

0.908

0.7

0.0 99.3

27

0

0.0

100.0 100.0

97

0

0.0

0

0

0.0

0.0

0 137

0

0.0

0.916

292

99.7

0.3

		D	illard S	t		Dillard St						Cowan Rd						Cowan Rd					
		No	rthbou	nd			Sou	thbou	nd		Eastbound						Westbound						
Start Time	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn A	op. Total	Left	Thru	Rgt	Uturn A	App. Total	Left	Thru	Rgt	Uturn A	App. Total	Int. Total		
Peak Hour Analys	sis from 0	7:00 A	M - 09:	MA 00																			
Peak Hour for Entire Intersection Begins at 07:45 AM																							
7:45 AM	5	0	6	0	11	0	0	0	0	ol	0	27	0	0	27	4	10	0	0	14	52		
8:00 AM	2	0	5	Ö	7	0	Ö	0	0	0	Ö	13	1	Ö	14	3	9	0	Ö	12	33		
8:15 AM	2	0	4	0	6	0	0	0	0	0	0	14	0	0	14	1	20	0	0	21	41		
8:30 AM	0	0	2	0	2	0	0	0	0	0	0	16	1	0	17	1	9	0	0	10	29		
Total Volume	9	0	17	0	26	0	0	0	0	0	0	70	2	0	72	9	48	0	0	57	155		
% App. Total	34.6	0.0	65.4	0.0	100	0.0	0.0	0.0	0.0	0	0.0	97.2	2.8	0.0	100	15.8	84.2	0.0	0.0	100			
PHF					0.591										0.667					0.679	0.745		
Cars, PU, Vans	9	0	17	0	26	0	0	0	0	0	0	67	1	0	68	9	44	0	0	53	147		
% Cars, PU, Vans	100.0	0.0	100.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	95.7	50.0	0.0	94.4	100.0	91.7	0.0	0.0	93.0	94.8		
Heavy trucks	0	0	0	0	0	0	0	0	0	0	0	3	1	0	4	0	4	0	0	4	8		
%Heavy trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	50.0	0.0	5.6	0.0	8.3	0.0	0.0	7.0	5.2		

ΡМ

PHF

100.0

0.0

Cars, PU, Vans

% Cars, PU, Vans

Heavy trucks

%Heavy trucks

0.646

0.0 100.0

0

0.0

31

0.0

0

0

0.0

0.0

0.0

0.0

0

0

0

0.0

0.0

0

0

0.0

0.0

0 29 0.0 100.0

0

0.0

0

0.0

FIVI																							
		D	illard S	t			Dillard St Southbound					Cowan Rd						Cowan Rd					
		No	rthbour	nd								Eastbound					Westbound						
Start Time	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Int. Total		
Peak Hour Analys	sis from	04:00 P	M - 06:0	00 PM																			
Peak Hour for En	tire Inter	section	Begins :	at 05:00) PM																		
5:00 PM	0	0	5	0	5	0	0	0	0	0	0	26	1	0	27	7	28	0	0	35	67		
5:15 PM	2	0	6	0	8	0	0	0	0	0	0	36	0	0	36	6	30	0	0	36	80		
5:30 PM	0	0	12	0	12	0	0	0	0	0	0	35	2	0	37	7	20	0	0	27	76		
5:45 PM	0	0	6	0	6	0	0	0	0	0	0	37	1	0	38	7	19	0	0	26	70		
Total Volume	2	0	29	0	31	0	0	0	0	0	0	134	4	0	138	27	97	0	0	124	293		
% App. Total	6.5	0.0	93.5	0.0	100	0.0	0.0	0.0	0.0	0	0.0	97.1	2.9	0.0	100	21.8	78.2	0.0	0.0	100			

0.0

0.0

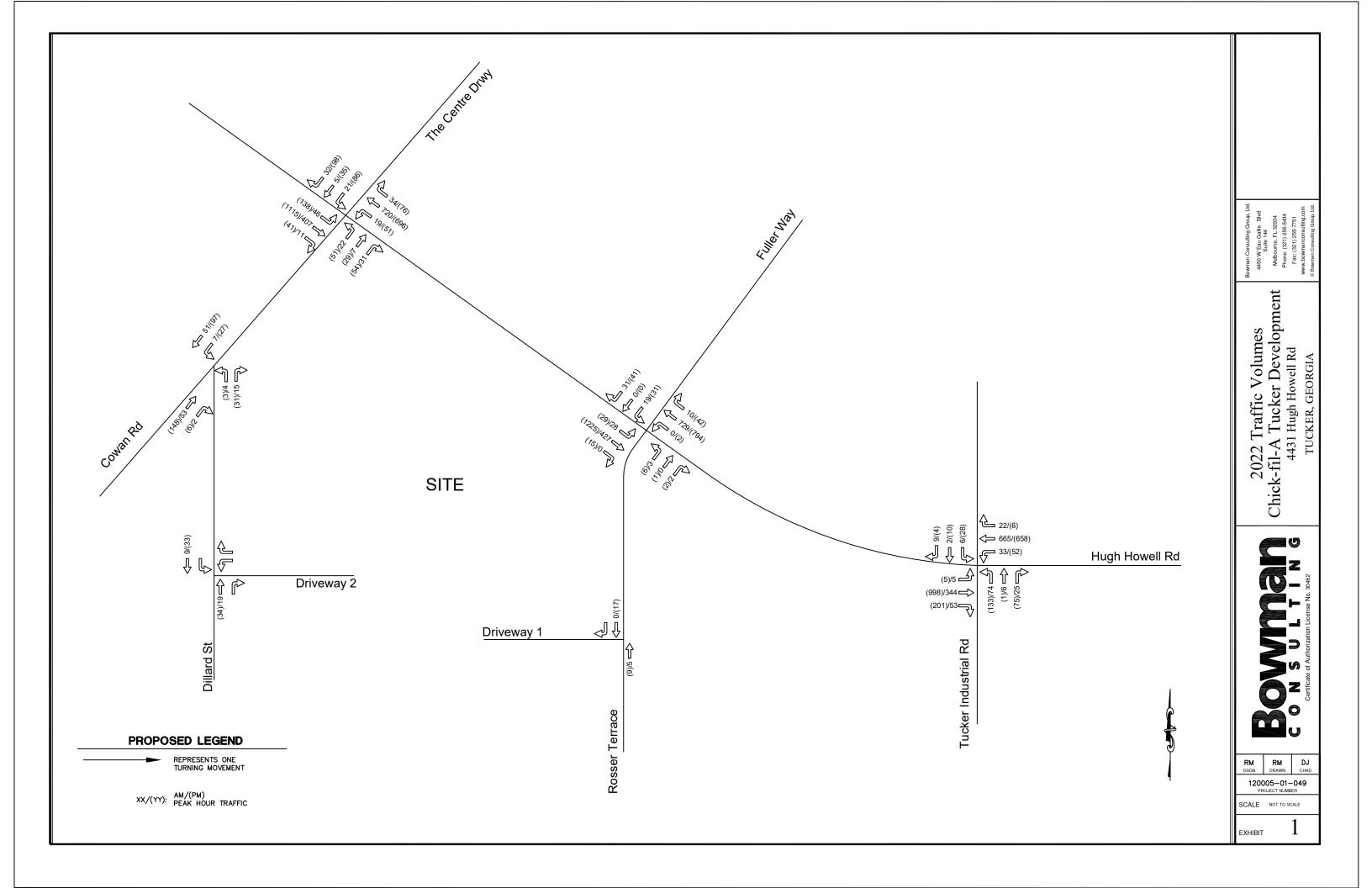
134

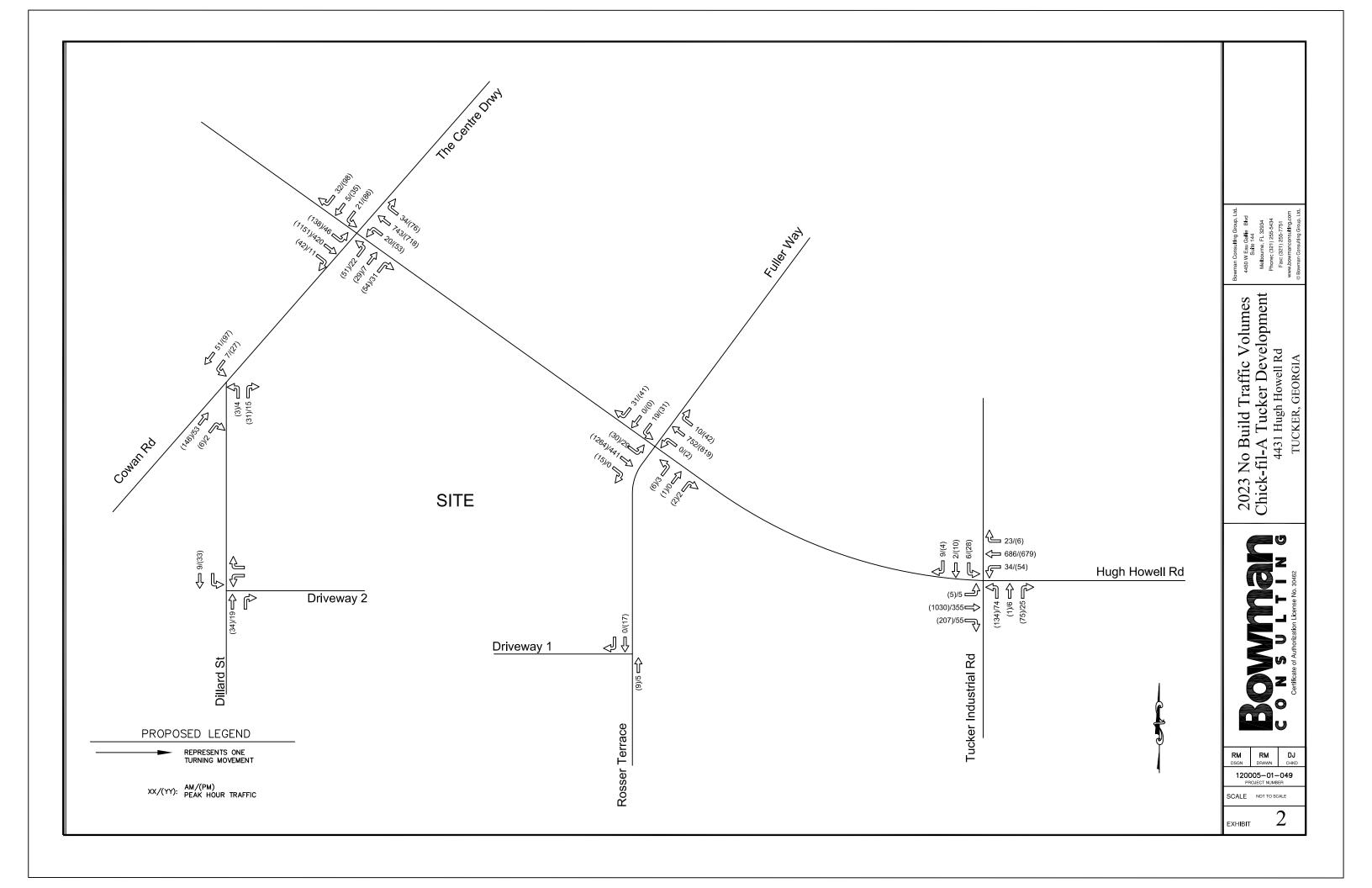
0

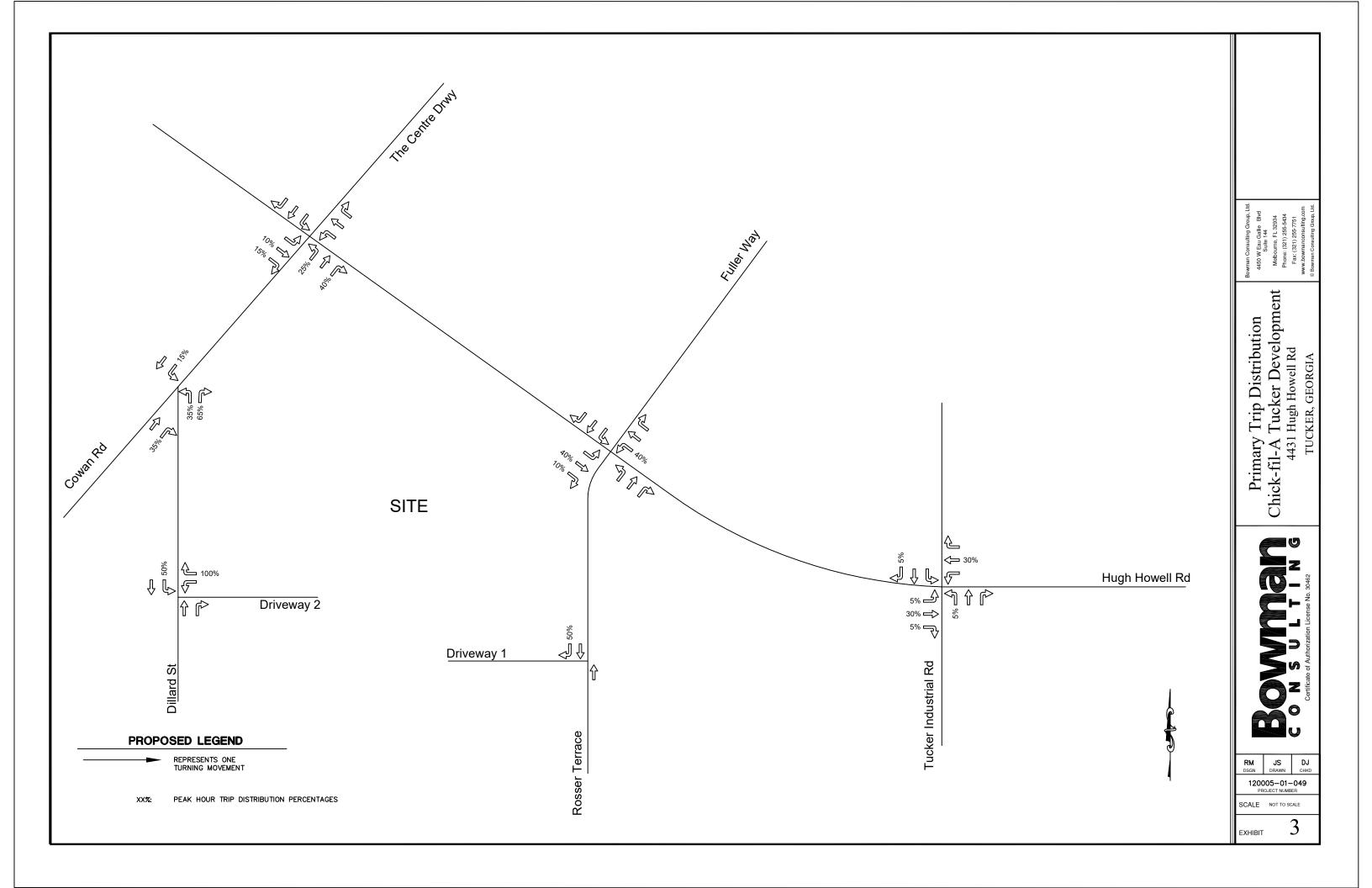
0.0 25.0

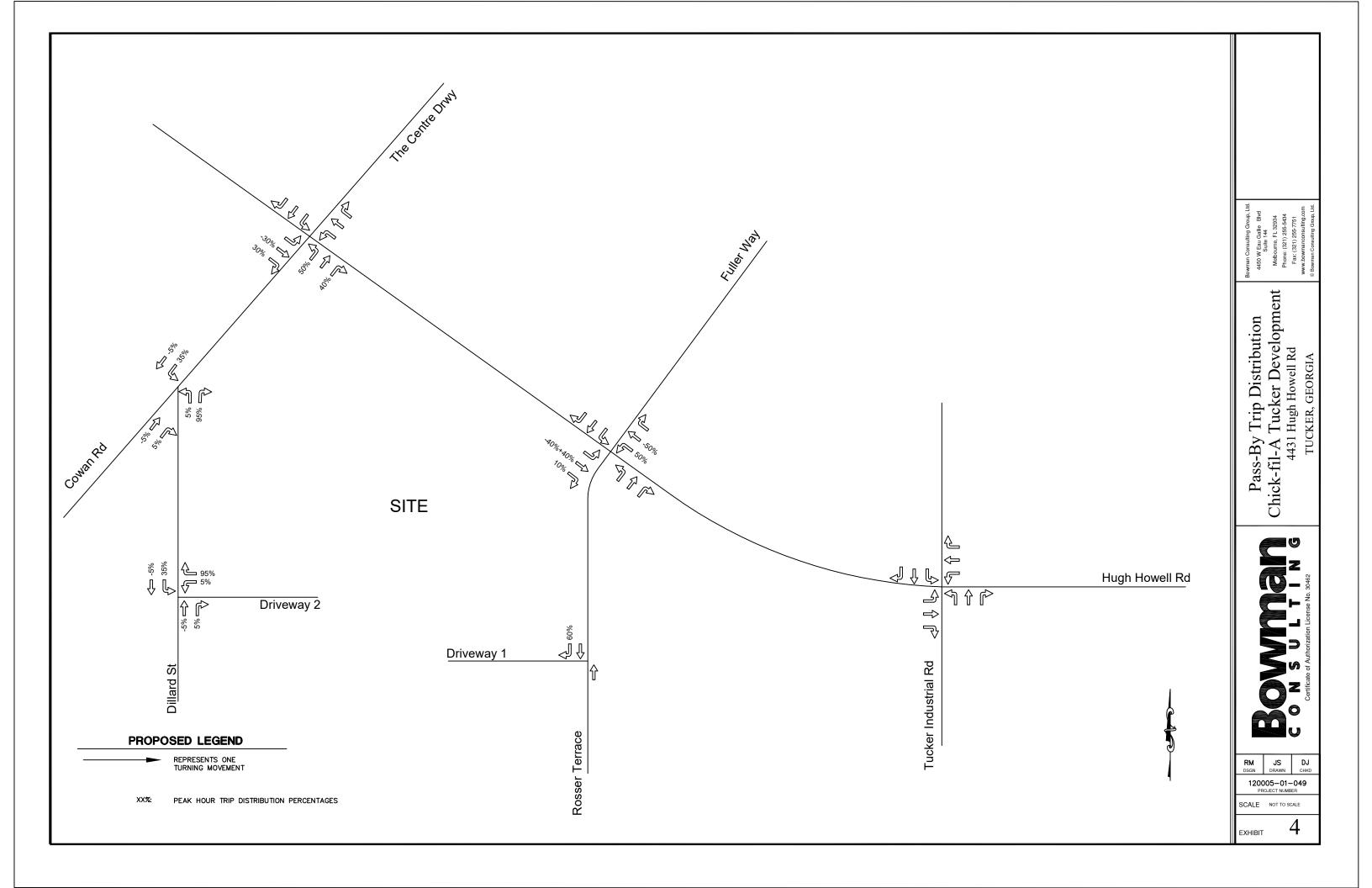
75.0

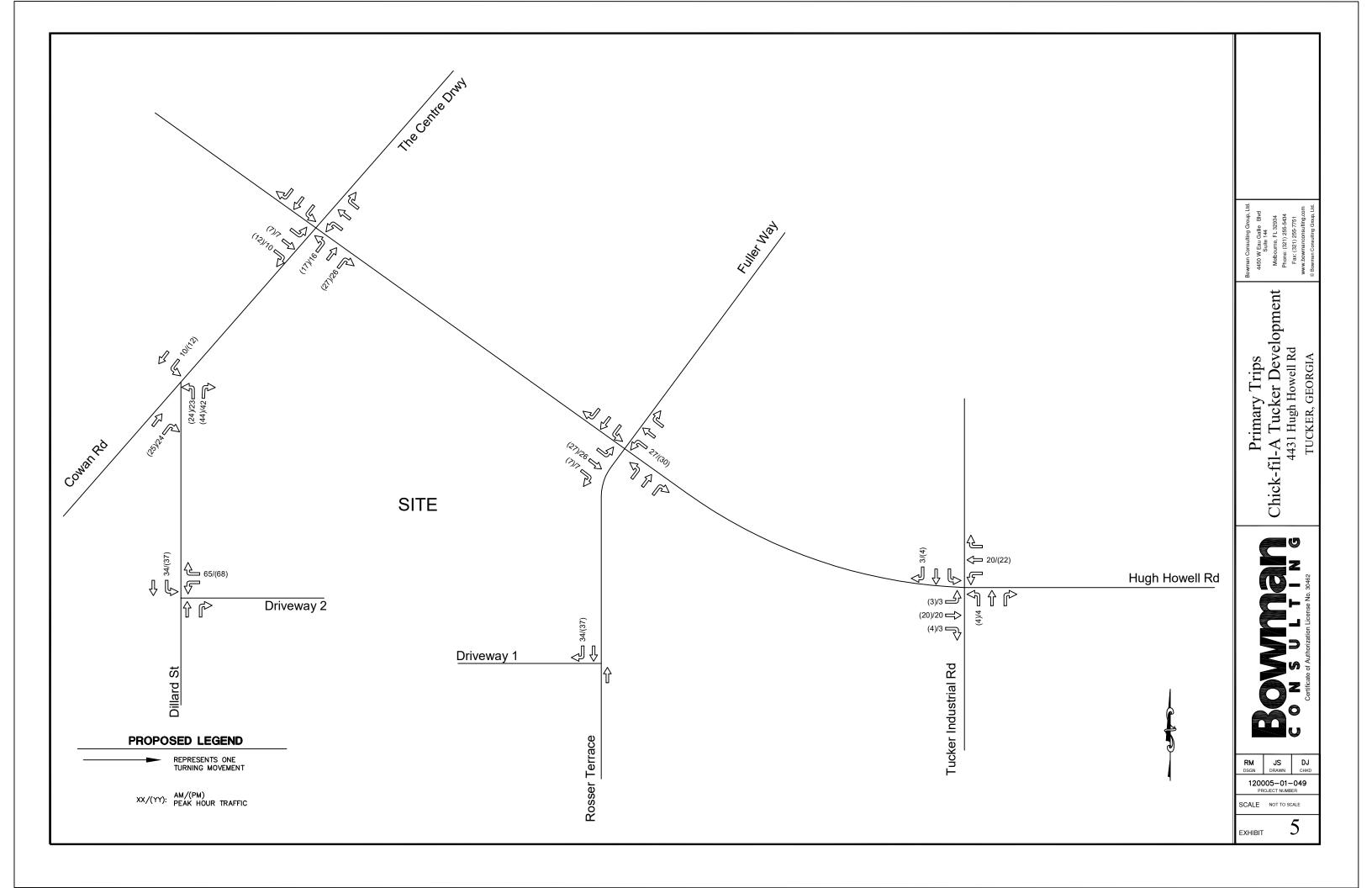
100.0

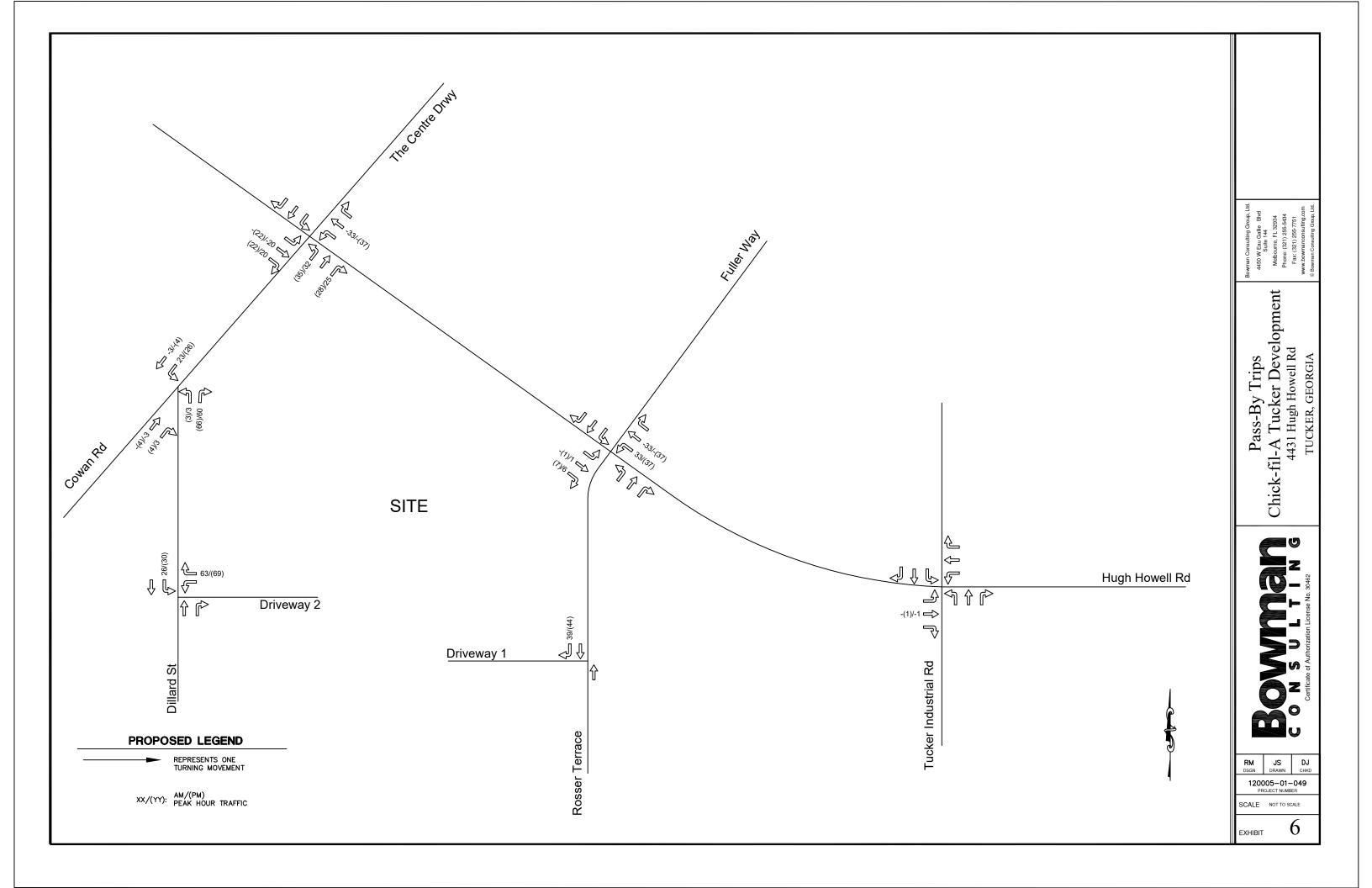

0

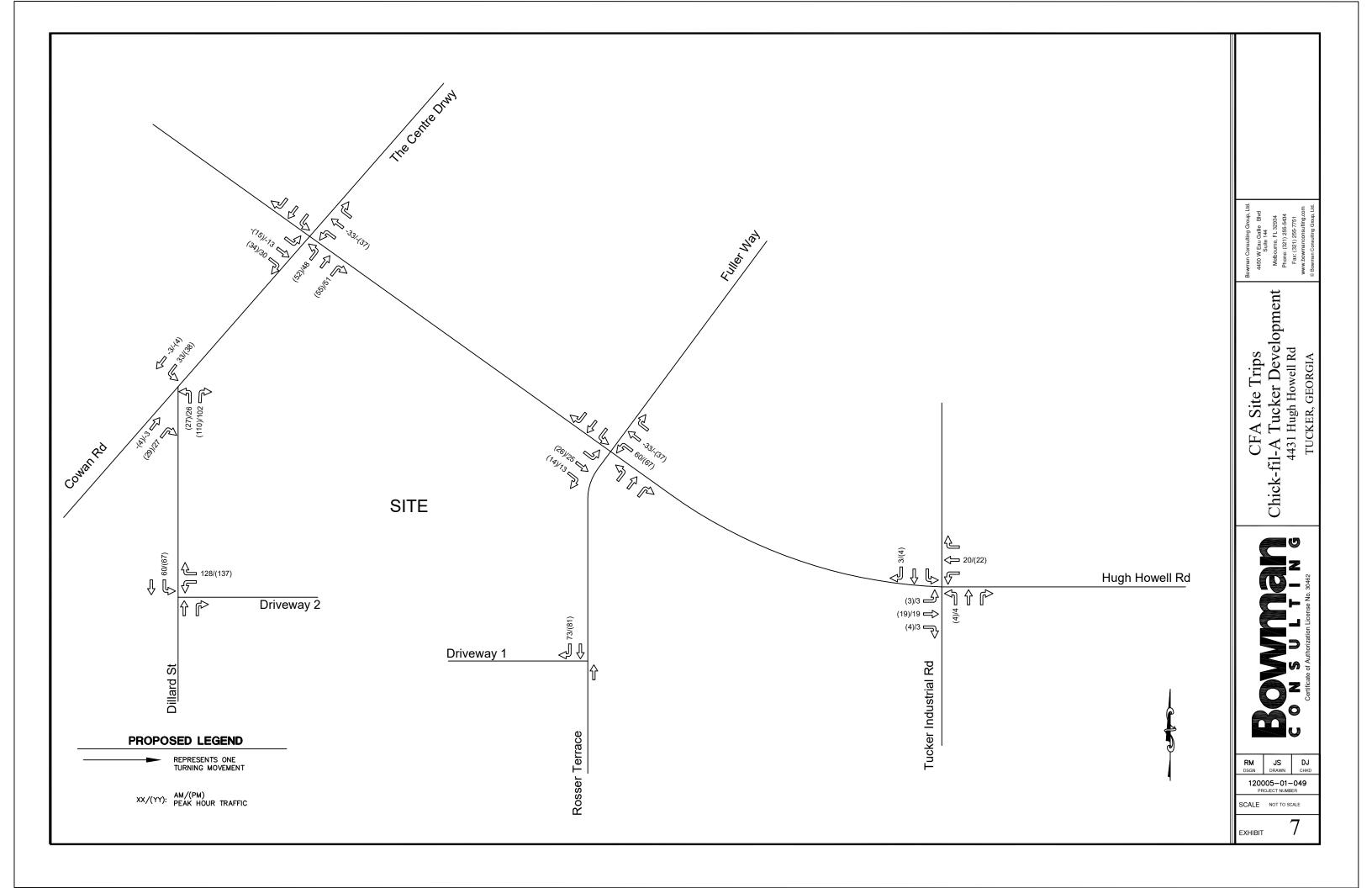

0

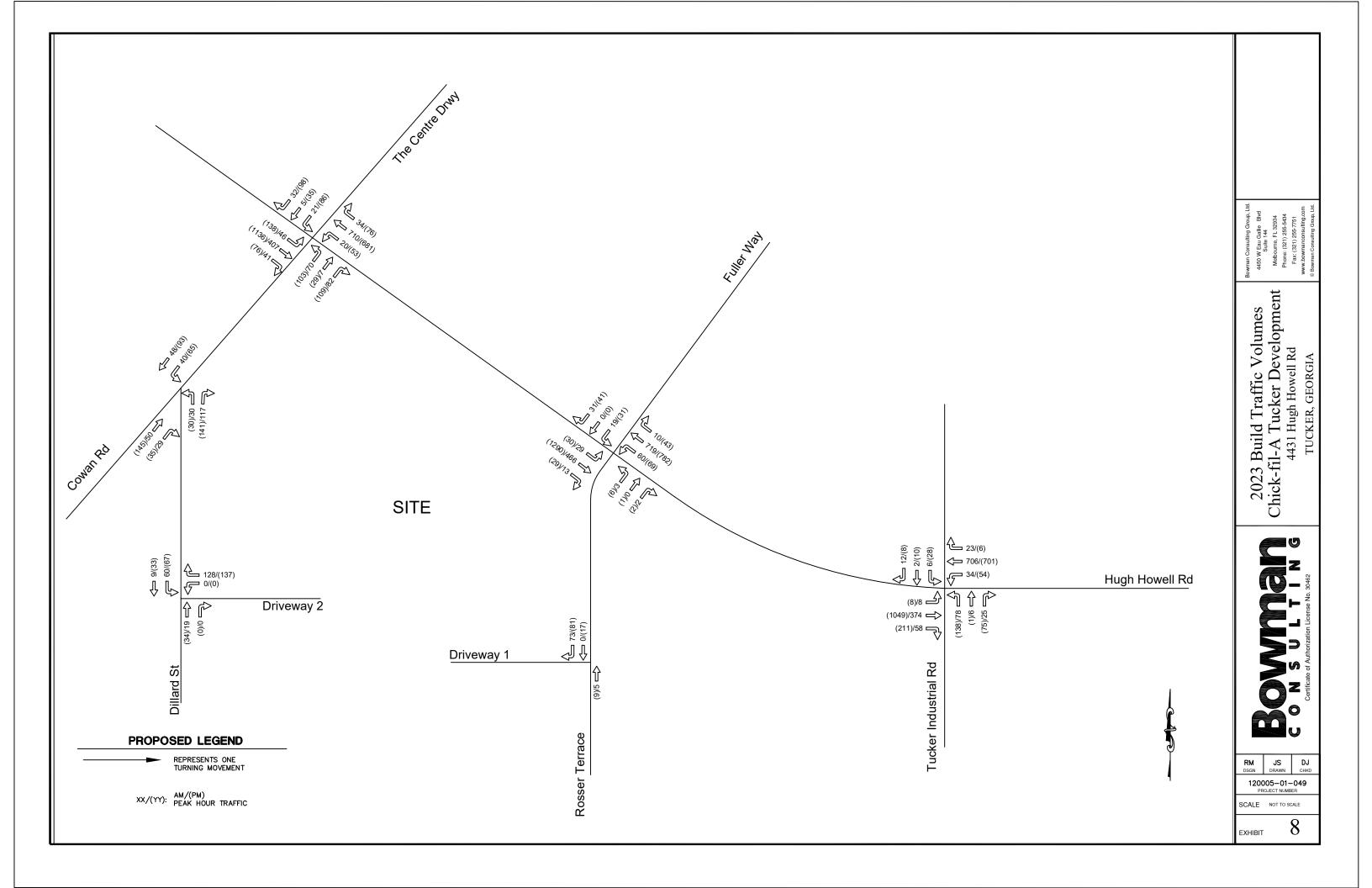

0.0




APPENDIX D







APPENDIX E

Memorandum

To: Chick-fil-A, Inc.

From: Andrew J. Petersen, P.E. - Director

Daniela Jurado – Analyst Rodrigo Meirelles -Analyst

Date: 06/18/2021

Re: Chick-Fil-A – Trip Generation Memorandum

Bowman Consulting has been retained by Chick-fil-A, Inc. to perform a Trip Generation at three fully operational Chick-Fil-A (CFA) Restaurants to determine the expected morning and evening peak hour trip generation rates for this facilities.

The purposes of the trip generation and stacking assessment are as follows:

- Determine the appropriate independent variable to assess the applicable CFA trip generation rates.
- Determine the expected trip generation rates for the CFA based on data collected from three existing CFA Sites.
- Determine if the Institute of Transportation Engineers (ITE) trip generation rates are consistent with calculated expected number of vehicular trips on the proposed CFA.
- Select the appropriate trip generation rates for the proposed CFA.

Selected Sites

For the preparation of this assessment, three Chick-Fil-A sites have been evaluated. The following criteria has been considered for the site selection:

- Type of Facility (Chick-Fil-A Restaurant)
- Operation (Drive-thru and Indoor sitting)
- Location of the facilities

The following sites were selected for the data collection.

	Chick-Fil A Piedmont
Location 1	 Address: 2580 Piedmont Rd NE, Atlanta, GA 30324
200ation i	Surveyed Site Intensity: 5,200 SF
	AADT of Adjacent Street: 44,100
	Chick-Fil A Druid Hills
Location 2	 Address: 2340 N Druid Hills Rd NE, Atlanta, GA 30329
Location 2	Surveyed Site Intensity: 4,550 SF
	 AADT of Adjacent Street: 56,300

Chick-Fil A Northside Dr

Address: 1100 Northside Dr NW, Atlanta, GA 30318
Surveyed Site Intensity: 4,450SF
AADT of Adjacent Street: 30,300

Study Methodology

The study was based on average weekday entering/exiting volumes at each one of the selected Chick-Fil-A locations provided by the Atlanta Department of Transportation. The information corresponds to the average weekday data from two months in 2019 and February 2021 while school was in session.

The procedures and evaluation for this assessment are in accordance with the Institute of Traffic Engineers (ITE) Trip Generation Manual Handbook, 3rd Edition. The ITE is the leading resource for such data and provides traffic and parking related data for numerous land use and building types. Additionally, ITE provides trip and parking generation procedures to determine site specific trip and parking generation rates.

Data Collection

For the purposes of this study the following data was collected:

- Site specific data for existing Chick Fil A sites: Square Footage and location.
- Published GDOT AADT counts.
- ITE Trip Generation information and variables.
- · Average trips generated by the surveyed Chick Fil A sites provided by the Atlanta Department of Transportation, see Attachment A.

Trip Generation Data

Table 1 displays the trip generation data collected on the three existing sites.

Table 1. Collected Trip Generation Data

Facility	Location	Square Footage	Adjacent Street ADTs	Time	In	Out	Total
CFA	2580 Piedmont Rd NE,	5.200	44,100	AM	221	221	442
OLA	Atlanta, GA 30324		44,100	PM	202	202	404
	2240 N. Druid Hillo Dd NE			AM	184	248	432
CFA	2340 N Druid Hills Rd NE Atlanta, GA 30329	4,550	56,300	Noon	306	412	718
	7 tilarita, 67 (66626			PM	192	308	500
	4400 North side Dr NW			AM	262	262	524
CFA	1100 Northside Dr NW Atlanta, GA 30318	4,450	30,300	Noon	263	263	526
	7 wana, 37 300 10			PM	164	164	328

To assess the trip generation rates for the Chick-Fil-A two independent variables were evaluated: Gross Floor Area (GFA), AADT Adjacent Street.

To select the independent variables, the best fitted curve models were evaluated based on the conceptual validity of signs of the equations and goodness of fit. The results of these evaluation are presented in Table 2.

Table 2. Trip Generation Model evaluation

Model	Independent Variable	Equation	R²	Signs Conceptually Valid	Acceptable Goodness of FIT
AM Models	1,000 SF GFA	y = -64.523x + 771.41	0.271	No	No
	AADT of Adajacent Street	y = -0.0036x + 622.44	0.8563	No	Yes
PM Models	1,000 SF GFA	y = 11.859x + 354.53	0.0031	Yes	No
PIM Models	AADT of Adajacent Street	y = 0.0066x + 123.51	0.9895	Yes	Yes

Models containing the GFA variable were found to be not conceptually valid, with equations that reflect an inverse relationship between the GFA and the number of trips generated by the site and unacceptable goodness of fit.

Models using AADT of Adjacent Street as independent variable show acceptable goodness of fit. However, the AM model Based on AADT of adjacent street shows signs non conceptually valid, therefore, the weighted average was evaluated for this time period.

Based on the results presented in **Table 2** the Adjacent Street Traffic was selected as independent variable for both the morning and evening peak hours.

Following the procedures presented on the ITE *trip generation Handbook*, Chapter 9 and Appendix J, the use of the weighted average rate for the Morning peak was validated by comparing the weighted standard deviation with the weighted Average trip rate. **Table 3** presents the validation for the use of weighted average for the morning peak hour trip rate.

Table 3. Validation of AM Weighted average trip generation

Location	AADT of adjacent Steet	Peak Hour AM	Trip rate	Value	Value Squared	weight	Value Squared *weight
2580 Piedmont Rd	44,100	442	0.01002	0.00	0.000005	0.34	0.0000015
2340 N Druid Hills Rd	56,300	432	0.00767	0.00	0.0000091	0.43	0.00000394
1100 Northside Dr	30,300	524	0.01729	0.01	0.0000435	0.23	0.00001009
Total	130,700.00	1,398.00	0.01070	-	Varia	ance	0.00001418
					Weighted San	nple Variance	0.00001773
					Weighted	d Std Dev	0.00
					Percentage	39%	
					Acceptable (less th	Yes	

As presented in **Table 3** the standard deviation of the data falls in the allowable 55% threshold according to the procedures presented on the ITE trip generation Handbook, Chapter 9 and Appendix J, therefore, the use of weighted average trip generation rate is acceptable.

The selected trip generation equations for CFA facilities are presented in **Table 4**.

Table 4. Trip Generation equations for CFA facilities

Model	Independent Variable	Equation
AM	AADT of Adajacent Street	Total AM CFA trips = 0.0107 x AADT of Adjacent Street
PM	AADT of Adajacent Street	Total PM CFA trips = 0.0066 x AADT of Adjacent Street + 123.51

The evening peak hour model is the resulting fitted curve with AADT of adjacent street as independent variable. The trip generation rate for the morning peak hour is 0.0107 trips/AADT of Adjacent Street Traffic.

Conclusions and Recommendations

• Both, the morning and evening models containing the GFA variable were found to have unacceptable goodness of fit, the morning models is not conceptually valid, with an

equation that reflects an inverse relationship between the GFA, and the number of trips generated by the site.

- Models using AADT of Adjacent Street as independent variable show acceptable goodness of fit.
- The evening peak hour model is fitted curve with AADT of adjacent street as independent variable.
- The AM model Based on AADT of adjacent street shows signs non conceptually valid therefore, the weighted average was evaluated for this time period.
- The evaluation of the data for the morning peak hour shows that the standard deviation of the data falls in the allowable 55% threshold according to the procedures presented on the ITE trip generation Handbook, Chapter 9 and Appendix J, therefore, the use of weighted average trip generation rate is acceptable.
- The trip generation rate for the morning peak hour is 0.0107 trips/AADT of Adjacent Street Traffic.

Bowman

ATTACHMENT A

From: Rome, Christopher <crome@AtlantaGa.Gov>

Sent: Wednesday, June 9, 2021 10:32 AM

Daniela Jurado; Rodriguez, Juan C.; Moore, Clyde To:

Cc: Rodrigo Meirelles; Andrew Petersen; Bridgette Ganter; Smoot-Madison,

Betty; Brown, Barrington G.

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge

Rd & Sheridan Rd

1100 Northside Dr

- AM Peak 262 trips in, assume 262 trips out 524 total trips
- Noon Peak 263 trips in, assume 263 trips out 526 total trips
- PM Peak 164 trips in, assume 164 trips out 328 total trips

Have you contacted GDOT's RTOP program or collected TMC's already at the I-85 ramps? That data will be more accurate than StreetLight Insight TMCs which are still in beta.

Chris Rome, PE, PTOE

Senior Multimodal Transportation Engineer City of Atlanta Department of Transportation 470-653-3016

crome@atlantaga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Wednesday, June 9, 2021 8:39 AM

To: Rome, Christopher < crome@AtlantaGa.Gov">crome@AtlantaGa.Gov>; Rodriguez, Juan C. < JCRodriguez@AtlantaGa.Gov>;

Moore, Clyde <CMoore@AtlantaGa.Gov>

Cc: Rodrigo Meirelles <rmeirelles@bowman.com>; Andrew Petersen <apetersen@bowman.com>; Bridgette Ganter

Bridgette Ganter

Bridgette Ganter

Brown, Barrington G. < BGBrown@AtlantaGa.Gov>

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

Good Morning Chris,

Would it be possible to also pull out the Turning movements for Cheshire Bridge at I-85 ramps for the am noon and pm?

Thank you,

DANIELA JURADO

Project Manager | BOWMAN

4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934 O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Rome, Christopher <crome@AtlantaGa.Gov>

Sent: Tuesday, June 8, 2021 7:09 PM

To: Daniela Jurado <<u>djurado@bowman.com</u>>; Rodriguez, Juan C. <<u>JCRodriguez@AtlantaGa.Gov</u>>;

Moore, Clyde < CMoore@AtlantaGa.Gov>

Cc: Rodrigo Meirelles <<u>rmeirelles@bowman.com</u>>; Andrew Petersen <<u>apetersen@bowman.com</u>>;

Bridgette Ganter < bganter@bowman.com; Smoot-Madison, Betty < bsmoot-madison@AtlantaGa.Gov;

Brown, Barrington G. < < BGBrown@AtlantaGa.Gov >

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

Tucker is outside of our data licensing geographic limits.

I'll pull the data from the Northside Dr site tomorrow.

Chris Rome, PE, PTOE

Senior Multimodal Transportation Engineer City of Atlanta Department of Transportation 470-653-3016

crome@atlantaga.gov

From: Daniela Jurado <djurado@bowman.com>

Sent: Tuesday, June 8, 2021 7:00 PM

To: Rome, Christopher <crome@AtlantaGa.Gov>; Rodriguez, Juan C. <JCRodriguez@AtlantaGa.Gov>;

Moore, Clyde <CMoore@AtlantaGa.Gov>

Cc: Rodrigo Meirelles < rmeirelles@bowman.com>; Andrew Petersen < apetersen@bowman.com>;

 $Bridgette\ Ganter\ < \underline{bganter@bowman.com}{>};\ Smoot-Madison,\ Betty\ < \underline{bsmoot-madison@AtlantaGa.Gov}{>};$

Brown, Barrington G. < < BGBrown@AtlantaGa.Gov >

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

Thank you for the information. We would like to have the information for the following sites:

Location	AADT
1100 Northside Dr NW	30,300
4340 Hugh Howell Rd, Tucker, GA 30084	25,300

The reason is, we also want to evaluate the trip generation based on the AADT of adjacent street.

Thank you in advance.

Sincerely,

DANIELA JURADO

Project Manager | **BOWMAN**4450 W Eau Gallie Boulevard, Suite 144, Melbourne, FL 32934
O: (321) 270-8905 | D: (321) 270-8977 | M: (786) 370-2762

djurado@bowman.com | bowman.com

From: Rome, Christopher <crome@AtlantaGa.Gov>

Sent: Tuesday, June 8, 2021 5:21 PM

To: Daniela Jurado djurado@bowman.com; Rodriguez, Juan C. JCRodriguez@AtlantaGa.Gov;

Moore, Clyde < CMoore@AtlantaGa.Gov >

Cc: Rodrigo Meirelles < rmeirelles@bowman.com; Andrew Petersen < apetersen@bowman.com; Bridgette Ganter < bsmoot-madison@AtlantaGa.Gov; Brown, Barrington G. sgray-mailto:sgr

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

I think it depends on the site characteristics if the Miami site is similar.

I used our StreetLight Data Insight platform access to look at the number of trips entering two Chick-fil-A locations in Atlanta. This is average weekday (M-Th) information from 2 months in 2019 and February 2021 when school was in session. The 1 standard deviation from the ITE land use code trip generation seems too low for an accurate assessment of site impact. If you have a specific site location in Atlanta that you think will be more representative of the conditions for the proposed site at Cheshire Bridge and Sheridan Rd, let me know and I can pull data for those locations.

2580 Piedmont Rd

- AM Peak 221 trips in, assume 221 trips out– 442 total trips
- Noon Peak 332 trips in, assume 332 trips out 664 total trips
- PM Peak 202 trips in, assume 202 trips out 404 total trips

2340 N Druid Hills Rd

- AM Peak 184 trips in, 248 trips out– 432 total trips
- Noon Peak 306 trips in, 412 trips out 718 total trips
- PM Peak 192 trips in, 308 trips out 500 total trips

Chris Rome, PE, PTOE

Senior Multimodal Transportation Engineer City of Atlanta Department of Transportation 470-653-3016 crome@atlantaga.gov

From: Daniela Jurado < djurado@bowman.com >

Sent: Tuesday, June 8, 2021 2:36 PM

To: Rome, Christopher <<u>crome@AtlantaGa.Gov</u>>; Rodriguez, Juan C. <<u>JCRodriguez@AtlantaGa.Gov</u>>;

Moore, Clyde < CMoore@AtlantaGa.Gov>

Cc: Rodrigo Meirelles < rmeirelles@bowman.com; Andrew Petersen < apetersen@bowman.com; Bridgette Ganter < bsmoot-madison@AtlantaGa.Gov; Brown, Barrington G. BGBrown@AtlantaGa.Gov;

Subject: [EXTERNAL] RE: Traffic Impact Study Methodology Chick-Fil-A Cheshire Bridge Rd & Sheridan Rd

Good Afternoon Chris,

APPENDIX F

2023 NO BUILD CONDITIONS Capacity Analysis

03/09/2022

1: Rosser Terrace/Fuller Way & Hugh Howell Rd

	۶	→	•	•	←	•	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†		*	^	7		4			₽	
Traffic Volume (vph)	29	441	0	0	752	10	3	0	2	19	0	31
Future Volume (vph)	29	441	0	0	752	10	3	0	2	19	0	31
Adj. Flow (vph)	31	474	0	0	809	11	3	0	2	20	0	33
Lane Group Flow (vph)	31	474	0	0	809	11	0	5	0	0	53	0
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 34.1% Analysis Period (min) 15

ICU Level of Service A

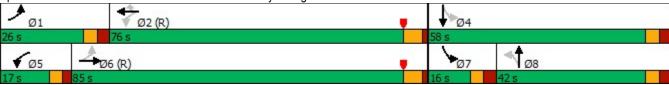
Synchro 10 Report Baseline Page 1

Intersection													
Int Delay, s/veh	0.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	†		7	^	7		4			1		
Traffic Vol, veh/h	29	441	0	0	752	10	3	0	2	19	0	31	
Future Vol, veh/h	29	441	0	0	752	10	3	0	2	19	0	31	
Conflicting Peds, #/hr	1	0	1	1	0	1	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	100	-	100	-	-	-	-	-	-	
Veh in Median Storage	.# -	0	-	-	0	-	-	1	-	-	1	-	
Grade, %	-	0	-	_	0	_	_	0	_	-	0	_	
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93	
Heavy Vehicles, %	7	3	0	0	2	10	33	0	0	10	0	0	
Mvmt Flow	31	474	0	0	809	11	3	0	2	20	0	33	
WWW.CT IOW	01	717	U	U	003		<u> </u>	U		20	U	00	
Major/Minor N	//ajor1			Major2			Minor1		ı	Minor2			
Conflicting Flow All	821	0	0	475	0	0	942	1358	238	1109	1347	406	
Stage 1	-	-	-	-110	-	-	537	537	-	810	810	-	
Stage 2	_	_	_	<u> </u>	_	_	405	821	_	299	537	_	
Critical Hdwy	4.24	_		4.1	_		8.16	6.5	6.9	7.7	6.5	6.9	
•	4.24			4.1		-	7.16	5.5	0.9	6.7	5.5	0.9	
Critical Hdwy Stg 1	-	-	-		-	-		5.5					
Critical Hdwy Stg 2	-	-	-	-	-	-	7.16		-	6.7	5.5	-	
Follow-up Hdwy	2.27	-	-	2.2	-	-	3.83	4	3.3	3.6	4	3.3	
Pot Cap-1 Maneuver	1139	-	-	*1369	-	-	*533	444	*912	*568	455	*796	
Stage 1	-	-	-	-	-	-	*723	712	-	*726	655	-	
Stage 2	-	-	-	-	-	-	*687	645	-	*837	712	-	
Platoon blocked, %	1	-	-	1	-	-	1	1	1	1	1	1	
Mov Cap-1 Maneuver	1138	-	-	*1368	-	-	*500	431	*911	*554	442	*796	
Mov Cap-2 Maneuver	-	-	-	-	-	-	*528	491	-	*593	508	-	
Stage 1	-	-	-	-	-	-	*702	692	-	*706	654	-	
Stage 2	-	-	-	-	-	-	*658	644	-	*812	692	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.5			0			10.7			9.7			
HCM LOS							В			Α			
Minor Lane/Major Mvm	t	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1				
Capacity (veh/h)		635	1138	-		* 1368	-	-	796				
HCM Lane V/C Ratio			0.027	_	_	-	_	_	0.042				
HCM Control Delay (s)		10.7	8.3	-	_	0	_	_	9.7				
HCM Lane LOS		В	A	_	_	A	_	_	A				
HCM 95th %tile Q(veh)		0	0.1	-	-	0	-	-	0.1				
Notes													
	a oitr	¢. D.	alay aya	oodo 30)Oc	L. Com	outotion	Not D	ofined	*. AII	major	olumo i	in platoon
~: Volume exceeds cap	acity	φ: D6	elay exc	eeus 30	JUS -	+: Com	pulation	ו ווטנ שנ	eiiiiea	. All	major V	oluitie I	in platoon

Synchro 10 Report Page 2 Baseline

Lanes, Volumes, Timings 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	•	→	•	1	•	•	1	†	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†		*	^	7		4		7	f >	
Traffic Volume (vph)	46	420	11	20	743	34	22	7	31	21	5	32
Future Volume (vph)	46	420	11	20	743	34	22	7	31	21	5	32
Adj. Flow (vph)	49	452	12	22	799	37	24	8	33	23	5	34
Lane Group Flow (vph)	49	464	0	22	799	37	0	65	0	23	39	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	26.0	85.0		17.0	76.0	76.0	42.0	42.0		16.0	58.0	
Total Split (%)	16.3%	53.1%		10.6%	47.5%	47.5%	26.3%	26.3%		10.0%	36.3%	
Maximum Green (s)	19.8	78.9		11.7	69.9	69.9	35.5	35.5		9.9	51.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	126.1	121.8		123.8	118.1	118.1		9.6		19.0	18.6	
Actuated g/C Ratio	0.79	0.76		0.77	0.74	0.74		0.06		0.12	0.12	
v/c Ratio	0.09	0.18		0.03	0.31	0.03		0.55		0.17	0.19	
Control Delay	5.0	7.1		4.5	8.0	0.1		58.3		60.5	21.6	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	5.0	7.1		4.5	8.0	0.1		58.3		60.5	21.6	
LOS	Α	Α		Α	Α	Α		Е		Е	С	
Approach Delay		6.9			7.6			58.3			36.0	
Approach LOS		Α			Α			Е			D	
Queue Length 50th (ft)	10	79		4	144	0		36		21	5	
Queue Length 95th (ft)	25	120		12	202	0		88		48	40	
Internal Link Dist (ft)		969			335			119			430	
Turn Bay Length (ft)	125			115								
Base Capacity (vph)	634	2603		801	2561	1202		361		147	519	
Starvation Cap Reductn	0	0		0	0	0		0		0	0	
Spillback Cap Reductn	0	0		0	0	0		0		0	0	
Storage Cap Reductn	0	0		0	0	0		0		0	0	
Reduced v/c Ratio	0.08	0.18		0.03	0.31	0.03		0.18		0.16	0.08	
Intersection Summary												


Synchro 10 Report Page 3 Baseline

03/09/2022

Cycle Length: 160
Actuated Cycle Length: 160
Offset: 148.9 (93%), Referenced to phase 2:WBTL and 6:EBTL, Start of Yellow
Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.55
Intersection Signal Delay: 10.7
Intersection LOS: B
Intersection Capacity Utilization 53.3%
ICU Level of Service A

Analysis Period (min) 15

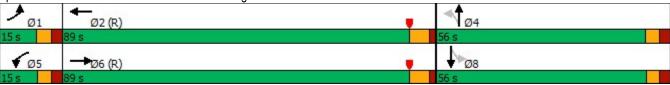
Splits and Phases: 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd

Baseline Synchro 10 Report

	۶	→	*	•	•	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		7	^	7		4		7	1	
Traffic Volume (veh/h)	46	420	11	20	743	34	22	7	31	21	5	32
Future Volume (veh/h)	46	420	11	20	743	34	22	7	31	21	5	32
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1900	1841	1900	1900	1900	1900	1752	1900	1900
Adj Flow Rate, veh/h	49	452	12	22	799	37	24	8	33	23	5	34
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	5	5	0	4	0	0	0	0	10	0	0
Cap, veh/h	603	2612	69	759	2558	1177	56	17	43	148	24	161
Arrive On Green	0.04	0.76	0.76	0.04	1.00	1.00	0.05	0.05	0.05	0.02	0.11	0.11
Sat Flow, veh/h	1810	3452	92	1810	3497	1609	471	309	804	1668	211	1432
Grp Volume(v), veh/h	49	227	237	22	799	37	65	0	0	23	0	39
Grp Sat Flow(s),veh/h/ln	1810	1735	1809	1810	1749	1609	1583	0	0	1668	0	1642
Q Serve(g_s), s	1.0	5.9	5.9	0.5	0.0	0.0	4.9	0.0	0.0	2.0	0.0	3.5
Cycle Q Clear(g_c), s	1.0	5.9	5.9	0.5	0.0	0.0	6.4	0.0	0.0	2.0	0.0	3.5
Prop In Lane	1.00		0.05	1.00		1.00	0.37		0.51	1.00		0.87
Lane Grp Cap(c), veh/h	603	1312	1369	759	2558	1177	116	0	0	148	0	184
V/C Ratio(X)	0.08	0.17	0.17	0.03	0.31	0.03	0.56	0.00	0.00	0.16	0.00	0.21
Avail Cap(c_a), veh/h	757	1312	1369	856	2558	1177	376	0	0	218	0	529
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	4.3	5.5	5.5	4.9	0.0	0.0	74.6	0.0	0.0	67.7	0.0	64.6
Incr Delay (d2), s/veh	0.1	0.3	0.3	0.0	0.3	0.0	4.1	0.0	0.0	0.5	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	2.0	2.1	0.2	0.1	0.0	2.8	0.0	0.0	0.9	0.0	1.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	4.4	5.7	5.7	4.9	0.3	0.0	78.7	0.0	0.0	68.2	0.0	65.2
LnGrp LOS	Α	Α	Α	A	Α	Α	Е	Α	Α	Е	Α	Е
Approach Vol, veh/h		513			858			65			62	
Approach Delay, s/veh		5.6			0.4			78.7			66.3	
Approach LOS		A			A			E			E	
Timer - Assigned Phs	1	2		4	5	6	7	8			_	
Phs Duration (G+Y+Rc), s	12.4	123.1		24.4	8.4	127.1	9.3	15.1				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 20	69.9		51.5	* 12	78.9	9.9	35.5				
Max Q Clear Time (g c+l1), s												
(0- /-	3.0 0.1	2.0		5.5 0.2	2.5 0.0	7.9 5.9	4.0 0.0	8.4 0.3				
Green Ext Time (p_c), s	0.1	13.6		U.Z	0.0	ე.ყ	0.0	0.5				
Intersection Summary												
HCM 6th Ctrl Delay			8.3									
HCM 6th LOS			Α									
NI (

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Baseline Synchro 10 Report
Page 5


	٠	→	> •		•	•	1	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR W	BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	↑ ↑		Y	†			4			4	
Traffic Volume (vph)	5	355	55	34	686	23	74	6	25	6	2	9
Future Volume (vph)	5	355	55	34	686	23	74	6	25	6	2	9
Adj. Flow (vph)	6	394	61	38	762	26	82	7	28	7	2	10
Lane Group Flow (vph)	6	455	0	38	788	0	0	117	0	0	19	0
Turn Type	Prot	NA	Р	rot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4	10	0.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	89.0	15	5.0	89.0		56.0	56.0		56.0	56.0	
Total Split (%)	9.4%	55.6%	9.4	1%	55.6%		35.0%	35.0%		35.0%	35.0%	
Maximum Green (s)	8.9	82.6	Ç	9.1	82.6		49.9	49.9		50.1	50.1	
Yellow Time (s)	3.5	4.7	3	3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7	,	2.6	1.7		2.8	2.8		2.9	2.9	
Lost Time Adjust (s)	0.0	0.0	(0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.1	6.4	Į	5.9	6.4			6.1			5.9	
Lead/Lag	Lead	Lag	Le	ad	Lag							
Lead-Lag Optimize?	Yes	Yes	Y	es	Yes							
Vehicle Extension (s)	3.0	5.0	3	3.0	5.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0	().2	3.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0	(0.0	20.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	15.0	(0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max	No	ne	C-Max		None	None		None	None	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		18.0			18.0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	6.2	116.9	Ç	9.1	127.0			17.8			18.0	
Actuated g/C Ratio	0.04	0.73	0.	06	0.79			0.11			0.11	
v/c Ratio	0.09	0.18		42	0.29			0.72			0.10	
Control Delay	67.4	9.2		5.4	5.6			85.2			38.4	
Queue Delay	0.0	0.0	(0.0	0.0			0.0			0.0	
Total Delay	67.4	9.2		5.4	5.6			85.2			38.4	
LOS	Е	Α		F	Α			F			D	
Approach Delay		9.9			9.3			85.2			38.4	
Approach LOS		Α			Α			F			D	
Queue Length 50th (ft)	5	108		39	90			110			9	
Queue Length 95th (ft)	20	171		79	203			175			35	
Internal Link Dist (ft)		1068			568			739			1148	
Turn Bay Length (ft)	150		1	00								
Base Capacity (vph)	100	2462		01	2760			439			539	
Starvation Cap Reductn	0	0	·	0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.06	0.18	0.	38	0.29			0.27			0.04	
Intersection Summary												

Baseline Synchro 10 Report Page 6

Cycle Length: 160
Actuated Cycle Length: 160
Offset: 38.6 (24%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.72
Intersection Signal Delay: 16.1
Intersection LOS: B
Intersection Capacity Utilization 50.1%
ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

Baseline Synchro 10 Report

	٠	→	*	•	•	•	1	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		7	†			4			4	
Traffic Volume (veh/h)	5	355	55	34	686	23	74	6	25	6	2	9
Future Volume (veh/h)	5	355	55	34	686	23	74	6	25	6	2	9
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1722	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	6	394	61	38	762	26	82	7	28	7	2	10
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	0	5	5	12	3	3	0	0	0	0	0	0
Cap, veh/h	13	2297	353	48	2730	93	139	10	35	76	30	83
Arrive On Green	0.01	1.00	1.00	0.03	0.78	0.78	0.09	0.09	0.09	0.09	0.09	0.09
Sat Flow, veh/h	1810	3005	461	1640	3478	119	1099	104	378	489	333	913
Grp Volume(v), veh/h	6	226	229	38	386	402	117	0	0	19	0	0
Grp Sat Flow(s),veh/h/ln	1810	1735	1731	1640	1763	1834	1581	0	0	1735	0	0
Q Serve(g_s), s	0.5	0.0	0.0	3.7	9.6	9.7	10.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.5	0.0	0.0	3.7	9.6	9.7	11.5	0.0	0.0	1.5	0.0	0.0
Prop In Lane	1.00		0.27	1.00		0.06	0.70		0.24	0.37		0.53
Lane Grp Cap(c), veh/h	13	1326	1324	48	1384	1440	183	0	0	189	0	0
V/C Ratio(X)	0.45	0.17	0.17	0.80	0.28	0.28	0.64	0.00	0.00	0.10	0.00	0.00
Avail Cap(c_a), veh/h	101	1326	1324	93	1384	1440	523	0	0	545	0	0
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	78.5	0.0	0.0	77.2	4.7	4.7	71.1	0.0	0.0	66.7	0.0	0.0
Incr Delay (d2), s/veh	22.3	0.3	0.3	25.3	0.5	0.5	3.7	0.0	0.0	0.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.1	0.1	1.9	3.2	3.3	4.9	0.0	0.0	0.7	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	400 =			740	0.0	0.0	07.0	0.0	0.0
LnGrp Delay(d),s/veh	100.8	0.3	0.3	102.5	5.2	5.2	74.8	0.0	0.0	67.0	0.0	0.0
LnGrp LOS	F	A	A	F	A	A	E	Α	A	E	A	<u>A</u>
Approach Vol, veh/h		461			826			117			19	
Approach Delay, s/veh		1.6			9.7			74.8			67.0	
Approach LOS		Α			Α			E			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.3	132.0		20.7	10.5	128.7		20.7				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 83		49.9	* 9.1	* 83		* 50				
Max Q Clear Time (g_c+l1), s	2.5	11.7		13.5	5.7	2.0		3.5				
Green Ext Time (p_c), s	0.0	11.8		0.6	0.0	5.8		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			13.2									
HCM 6th LOS			В									

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Baseline Synchro 10 Report Page 8

	-	•	1	•	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			र्स	N.	
Traffic Volume (vph)	53	2	7	51	4	15
Future Volume (vph)	53	2	7	51	4	15
Adj. Flow (vph)	72	3	9	69	5	20
Lane Group Flow (vph)	75	0	0	78	25	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utiliza	ition 18.6%			IC	U Level c	of Service A
Analysis Period (min) 15						

Baseline Synchro 10 Report
Page 9

Intersection						
Int Delay, s/veh	1.7					
Movement	EBT	EBR	\\/DI	WDT	NBL	NBR
		EDK	WBL	WBT		INDK
Lane Configurations	}	2	7	€	Y	15
Traffic Vol, veh/h	53 53	2	7	51	4	
Future Vol, veh/h	0	2	7	51	4	15
Conflicting Peds, #/hr	-	0	0	0	1	0
Sign Control RT Channelized	Free	Free	Free	Free	Stop	Stop
	-	None	-		-	None
Storage Length	- 4 0	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	- 74	-	0	0	- 74
Peak Hour Factor	74	74	74	74	74	74
Heavy Vehicles, %	4	50	0	8	0	0
Mvmt Flow	72	3	9	69	5	20
Major/Minor M	ajor1	N	Major2	N	/linor1	
Conflicting Flow All	0	0	75	0	162	74
Stage 1	_	-	-	-	74	
Stage 2	_	_	_	_	88	_
Critical Hdwy	_	_	4.1	_	6.4	6.2
Critical Hdwy Stg 1	_	_	- T. I	_	5.4	- 0.2
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	_	<u>-</u>	2.2	<u>-</u>	3.5	3.3
Pot Cap-1 Maneuver	_	_	1537	_	834	993
Stage 1	_	_	1001	<u>-</u>	954	-
Stage 2	_	_	_	_	940	_
Platoon blocked, %	_	_	_	_	340	_
Mov Cap-1 Maneuver	_	-	1537		828	993
		-	1001	-	828	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	954	-
Stage 2	-	-	-	-	933	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		8.9	
HCM LOS	-				Α	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		953	-		1537	-
HCM Lane V/C Ratio		0.027	-	-	0.006	-
HCM Control Delay (s)		8.9	-	-	7.4	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Synchro 10 Report Page 10 Baseline

03/09/2022

1: Rosser Terrace/Fuller Way & Hugh Howell Rd

	۶	→	*	•	←	•	1	†	~	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		*	^	7		4			f)	
Traffic Volume (vph)	30	1264	15	2	819	43	6	1	2	31	0	41
Future Volume (vph)	30	1264	15	2	819	43	6	1	2	31	0	41
Adj. Flow (vph)	31	1317	16	2	853	45	6	1	2	32	0	43
Lane Group Flow (vph)	31	1333	0	2	853	45	0	9	0	0	75	0
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

Control Type: Unsignalized

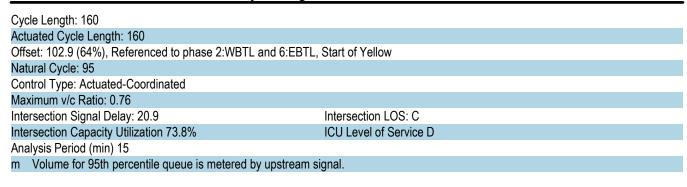
Intersection Capacity Utilization 46.5%

Analysis Period (min) 15

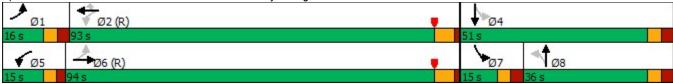
ICU Level of Service A

Baseline Synchro 10 Report
Page 1

Intersection													
Int Delay, s/veh	0.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ħ	†		7	^	7		4			ĵ.		
Traffic Vol, veh/h	30	1264	15	2	819	43	6	1	2	31	0	41	
uture Vol, veh/h	30	1264	15	2	819	43	6	1	2	31	0	41	
Conflicting Peds, #/hr	0	0	2	2	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	100	-	100	-	-	-	-	-	-	
eh in Median Storage	e,# -	0	-	-	0	-	-	1	-	-	1	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
eak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
leavy Vehicles, %	4	3	0	0	3	7	0	0	0	0	0	10	
1vmt Flow	31	1317	16	2	853	45	6	1	2	32	0	43	
ajor/Minor	Major1			Major2		ı	Minor1		ı	Minor2			
Conflicting Flow All	898	0	0	1335	0	0	1820	2291	669	1578	2254	427	
Stage 1	-	-	_	-	-	-	1389	1389	-	857	857	-	
Stage 2	_	_	_	_	_	_	431	902	_	721	1397	_	
ritical Hdwy	4.18	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	7.1	
ritical Hdwy Stg 1	7.10	_	_	-	_	_	6.5	5.5	-	6.5	5.5	- '	
ritical Hdwy Stg 2	_	_	_	_	_	_	6.5	5.5	-	6.5	5.5	_	
ollow-up Hdwy	2.24	_	_	2.2	_	_	3.5	4	3.3	3.5	4	3.4	
ot Cap-1 Maneuver	*1118	_	_	*878	_	_	*187	*56	*585	*412	*62	*736	
Stage 1	-	_	_	-	_	_	*551	*483	-	*715	*626	-	
Stage 2	_	_	_	_	_	-	*715	*626	_	*551	*477	_	
latoon blocked, %	1	_	_	1	_	_	1	1	1	1	1	1	
lov Cap-1 Maneuver	*1118	_	_	*876	_	_	*171	*54	*583	*400	*60	*736	
Nov Cap-2 Maneuver	-	-	_	-	-	-	*343	*263	-	*448	*268	-	
Stage 1	-	_	-	_	-	-	*535	*468	-	*695	*624	-	
Stage 2	-	-	-	-	-	-	*672	*624	-	*533	*462	_	
pproach	EB			WB			NB			SB			
ICM Control Delay, s	0.2			0			15.2			10.2			
CM LOS	0.2			U			13.2 C			10.2 B			
10111 200							Ū						
/linor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBI n1				
Capacity (veh/h)			* 1118	-		* 876	-	-	736				
CM Lane V/C Ratio		0.026		_		0.002	_	_	0.058				
CM Control Delay (s)		15.2	8.3		_	9.1	_	_	10.2				
ICM Lane LOS		C	Α	_	_	Α	_	_	В				
ICM 95th %tile Q(veh)	0.1	0.1	-	-	0	-	-	0.2				
		V.,							J				
otes	!(6 D	.1		00-	0		M-1 D	- C I	*. 4!			1-4
: Volume exceeds cap	pacity	\$: De	elay exc	eeds 30	JUS	+: Com _l	putation	Not De	erined	": All	major v	olume II	n platoon


Synchro 10 Report Page 2 Baseline

Lanes, Volumes, Timings 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd


	۶	→	•	•	•	•	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	^	7		4		7	7>	
Traffic Volume (vph)	138	1151	42	53	718	76	51	29	54	86	35	98
Future Volume (vph)	138	1151	42	53	718	76	51	29	54	86	35	98
Adj. Flow (vph)	148	1238	45	57	772	82	55	31	58	92	38	105
Lane Group Flow (vph)	148	1283	0	57	772	82	0	144	0	92	143	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	16.0	94.0		15.0	93.0	93.0	36.0	36.0		15.0	51.0	
Total Split (%)	10.0%	58.8%		9.4%	58.1%	58.1%	22.5%	22.5%		9.4%	31.9%	
Maximum Green (s)	9.8	87.9		9.7	86.9	86.9	29.5	29.5		8.9	44.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	111.0	102.9		105.1	97.2	97.2		19.4		34.8	34.4	
Actuated g/C Ratio	0.69	0.64		0.66	0.61	0.61		0.12		0.22	0.22	
v/c Ratio	0.32	0.57		0.21	0.36	0.08		0.76		0.41	0.35	
Control Delay	10.2	18.8		8.7	13.6	0.5		82.2		55.8	23.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	10.2	18.8		8.7	13.6	0.5		82.2		55.8	23.1	
LOS	В	В		Α	В	Α		F		Е	С	
Approach Delay		17.9			12.1			82.2			35.9	
Approach LOS		В			В			F			D	
Queue Length 50th (ft)	46	394		13	166	0		129		81	49	
Queue Length 95th (ft)	85	541		m27	199	m3		201		127	109	
Internal Link Dist (ft)		969			335			94			430	
Turn Bay Length (ft)	125			115								
Base Capacity (vph)	476	2245		298	2129	1001		279		228	500	
Starvation Cap Reductn	0	0		0	0	0		0		0	0	
Spillback Cap Reductn	0	0		0	0	0		0		0	0	
Storage Cap Reductn	0	0		0	0	0		0		0	0	
Reduced v/c Ratio	0.31	0.57		0.19	0.36	0.08		0.52		0.40	0.29	
Intersection Summary												

Synchro 10 Report Page 3 Baseline

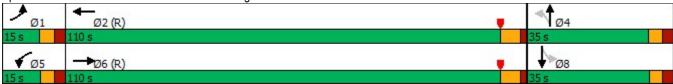
03/09/2022

Splits and Phases: 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd

Baseline Synchro 10 Report

	۶	→	*	•	•	•	1	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		7	^	7		4		*	₽	
Traffic Volume (veh/h)	138	1151	42	53	718	76	51	29	54	86	35	98
Future Volume (veh/h)	138	1151	42	53	718	76	51	29	54	86	35	98
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1856	1856	1900	1856	1870	1900	1900	1900	1885	1900	1900
Adj Flow Rate, veh/h	148	1238	45	57	772	82	55	31	58	92	38	105
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	3	3	0	3	2	0	0	0	1	0	0
Cap, veh/h	540	2270	82	299	2234	1004	88	45	69	255	91	252
Arrive On Green	0.04	0.65	0.65	0.06	1.00	1.00	0.11	0.11	0.11	0.06	0.21	0.21
Sat Flow, veh/h	1810	3470	126	1810	3526	1585	510	403	616	1795	445	1231
Grp Volume(v), veh/h	148	629	654	57	772	82	144	0	0	92	0	143
Grp Sat Flow(s),veh/h/ln	1810	1763	1833	1810	1763	1585	1529	0	0	1795	0	1676
Q Serve(g_s), s	4.6	30.7	30.7	1.8	0.0	0.0	12.8	0.0	0.0	7.1	0.0	11.9
Cycle Q Clear(g_c), s	4.6	30.7	30.7	1.8	0.0	0.0	14.7	0.0	0.0	7.1	0.0	11.9
Prop In Lane	1.00		0.07	1.00		1.00	0.38		0.40	1.00		0.73
Lane Grp Cap(c), veh/h	540	1153	1199	299	2234	1004	201	0	0	255	0	344
V/C Ratio(X)	0.27	0.55	0.55	0.19	0.35	0.08	0.71	0.00	0.00	0.36	0.00	0.42
Avail Cap(c_a), veh/h	572	1153	1199	357	2234	1004	311	0	0	255	0	466
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	9.1	14.9	14.9	11.7	0.0	0.0	69.6	0.0	0.0	56.8	0.0	55.3
Incr Delay (d2), s/veh	0.3	1.9	1.8	0.3	0.4	0.2	4.7	0.0	0.0	0.9	0.0	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	12.2	12.6	0.7	0.1	0.0	6.1	0.0	0.0	3.3	0.0	5.1
Unsig. Movement Delay, s/veh		40.7	40.7	10.1	0.4	0.0	740	0.0	0.0		0.0	50 4
LnGrp Delay(d),s/veh	9.3	16.7	16.7	12.1	0.4	0.2	74.2	0.0	0.0	57.6	0.0	56.1
LnGrp LOS	A	В	В	В	A	Α	E	Α	A	E	Α	E
Approach Vol, veh/h		1431			911			144			235	
Approach Delay, s/veh		15.9			1.1			74.2			56.7	
Approach LOS		В			Α			Е			Е	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.2	107.5		39.3	9.9	110.8	15.0	24.3				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 9.8	86.9		44.5	* 9.7	87.9	8.9	29.5				
Max Q Clear Time (g_c+l1), s	6.6	2.0		13.9	3.8	32.7	9.1	16.7				
Green Ext Time (p_c), s	0.1	13.8		0.9	0.0	24.7	0.0	0.6				
Intersection Summary												
HCM 6th Ctrl Delay			17.6									
HCM 6th LOS			В									

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.


Synchro 10 Report Baseline Page 5

	۶	→	•	•	←	•	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		7	†			4			4	
Traffic Volume (vph)	5	1030	207	54	679	6	134	1	75	28	10	4
Future Volume (vph)	5	1030	207	54	679	6	134	1	75	28	10	4
Adj. Flow (vph)	5	1084	218	57	715	6	141	1	79	29	11	4
Lane Group Flow (vph)	5	1302	0	57	721	0	0	221	0	0	44	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	110.0		15.0	110.0		35.0	35.0		35.0	35.0	
Total Split (%)	9.4%	68.8%		9.4%	68.8%		21.9%	21.9%		21.9%	21.9%	
Maximum Green (s)	8.9	103.6		9.1	103.6		28.9	28.9		29.1	29.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	15.0		0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		18.0			18.0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	6.2	109.2		8.7	118.6			26.2			26.4	
Actuated g/C Ratio	0.04	0.68		0.05	0.74			0.16			0.16	
v/c Ratio	0.09	0.56		0.65	0.28			0.89			0.18	
Control Delay	90.8	6.2		104.9	7.8			94.3			54.1	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	90.8	6.2		104.9	7.8			94.3			54.1	
LOS	F	Α		F	Α			F			D	
Approach Delay		6.5			14.9			94.3			54.1	
Approach LOS		Α			В			F			D	
Queue Length 50th (ft)	5	113		59	117			211			37	
Queue Length 95th (ft)	m11	124		#124	196			#347			76	
Internal Link Dist (ft)		1068			568			739			1148	
Turn Bay Length (ft)	150			100								
Base Capacity (vph)	83	2339		93	2595			273			262	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.06	0.56		0.61	0.28			0.81			0.17	
Intersection Summary												

Baseline Synchro 10 Report Page 6

Cycle Length: 160
Actuated Cycle Length: 160
Offset: 118.6 (74%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 18.4 Intersection LOS: B
Intersection Capacity Utilization 68.5% ICU Level of Service C
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile gueue is metered by upstream signal.

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

Baseline Synchro 10 Report

	٠	→	*	•	•	•	1	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		7	†			4			4	
Traffic Volume (veh/h)	5	1030	207	54	679	6	134	1	75	28	10	4
Future Volume (veh/h)	5	1030	207	54	679	6	134	1	75	28	10	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1604	1856	1856	1752	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	5	1084	218	57	715	6	141	1	79	29	11	4
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	20	3	3	10	3	3	0	0	0	0	0	0
Cap, veh/h	10	2023	405	71	2604	22	191	1	86	175	64	20
Arrive On Green	0.01	1.00	1.00	0.04	0.73	0.73	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1527	2926	586	1668	3583	30	1024	7	573	915	423	134
Grp Volume(v), veh/h	5	651	651	57	352	369	221	0	0	44	0	0
Grp Sat Flow(s),veh/h/ln	1527	1763	1749	1668	1763	1850	1604	0	0	1472	0	0
Q Serve(g_s), s	0.5	0.0	0.0	5.4	10.9	10.9	17.7	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.5	0.0	0.0	5.4	10.9	10.9	21.6	0.0	0.0	3.9	0.0	0.0
Prop In Lane	1.00		0.34	1.00		0.02	0.64		0.36	0.66		0.09
Lane Grp Cap(c), veh/h	10	1219	1210	71	1281	1345	279	0	0	259	0	0
V/C Ratio(X)	0.53	0.53	0.54	0.80	0.27	0.27	0.79	0.00	0.00	0.17	0.00	0.00
Avail Cap(c_a), veh/h	85	1219	1210	95	1281	1345	325	0	0	307	0	0
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	78.8	0.0	0.0	75.9	7.5	7.5	66.5	0.0	0.0	59.3	0.0	0.0
Incr Delay (d2), s/veh	38.4	1.7	1.7	28.5	0.5	0.5	11.0	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.6	0.6	2.9	4.0	4.1	9.7	0.0	0.0	1.6	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	117.2	1.7	1.7	104.4	8.0	8.0	77.6	0.0	0.0	59.6	0.0	0.0
LnGrp LOS	F	A	Α	F	Α	A	E	Α	Α	E	Α	A
Approach Vol, veh/h		1307			778			221			44	
Approach Delay, s/veh		2.1			15.0			77.6			59.6	
Approach LOS		Α			В			Е			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.1	122.7		30.2	12.7	117.0		30.2				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 1E2		28.9	* 9.1	* 1E2		* 29				
Max Q Clear Time (g_c+I1), s	2.5	12.9		23.6	7.4	2.0		5.9				
Green Ext Time (p_c), s	0.0	10.4		0.5	0.0	30.9		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			14.6									
HCM 6th LOS			В									
N. C												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Baseline Synchro 10 Report Page 8

	-	*	1	•	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			↑	N. F	
Traffic Volume (vph)	149	6	27	97	3	31
Future Volume (vph)	149	6	27	97	3	31
Adj. Flow (vph)	162	7	29	105	3	34
Lane Group Flow (vph)	169	0	0	134	37	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 29.0%			IC	U Level o	f Service A
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	1.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		EDK	WDL			INDK
Lane Configurations	140	G	27	^	Y	31
Traffic Vol, veh/h	149	6	27	97	3	
Future Vol, veh/h	149	6	27 1	97	3	31
Conflicting Peds, #/hr	0	•	*	0	1	
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	<u>-</u>	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	25	0	0	0	0
Mvmt Flow	162	7	29	105	3	34
Major/Minor M	lajor1	N	Major2	N	/linor1	
Conflicting Flow All	0	0	170	0	331	169
Stage 1	-	_	-	-	167	-
Stage 2	_	_	_	_	164	_
Critical Hdwy	_	_	4.1	_	6.4	6.2
Critical Hdwy Stg 1	_	_	7.1	_	5.4	- 0.2
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	_	<u>-</u>	2.2	<u>-</u>	3.5	3.3
Pot Cap-1 Maneuver	_	_	1420	_	668	880
Stage 1	_	_	1420	<u>-</u>	867	-
Stage 2	_	_	_	_	870	_
Platoon blocked, %	_	_	_	_	070	_
Mov Cap-1 Maneuver			1419		652	877
		-	1419	-	652	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	866	-
Stage 2	-	-	-	-	850	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.7		9.4	
HCM LOS					Α	
NA: 1 / / NA : NA		IDL 4	БРТ		\A/DI	VAIDT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		851	-		1419	-
HCM Lane V/C Ratio		0.043	-		0.021	-
HCM Control Delay (s)		9.4	-	-	7.6	-
HCM Lane LOS		Α	-	-	Α	-
HCM 95th %tile Q(veh)		0.1	-	-	0.1	-

Synchro 10 Report Page 10 Baseline

2023 BUILD CONDITIONS Capacity Analysis

1: Rosser Terrace/Fuller Way & Hugh Howell Rd

۶	→	*	•	•	•	1	†	~	-	ļ	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
7	↑ ↑		7	^	7		4			T ₃	
29	466	13	60	719	10	3	0	2	19	0	31
29	466	13	60	719	10	3	0	2	19	0	31
31	501	14	65	773	11	3	0	2	20	0	33
31	515	0	65	773	11	0	5	0	0	53	0
	Free			Free			Stop			Stop	

Intersection Summary

Lane Group

Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Adj. Flow (vph)

Lane Group Flow (vph)

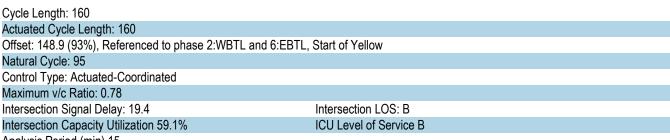
Sign Control

Control Type: Unsignalized

Intersection Capacity Utilization 36.5%

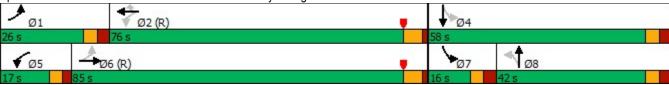
Analysis Period (min) 15

ICU Level of Service A


Intersection													
Int Delay, s/veh	0.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	† \$		*	^	1		4			1,		
Traffic Vol, veh/h	29	466	13	60	719	10	3	0	2	19	0	31	
Future Vol, veh/h	29	466	13	60	719	10	3	0	2	19	0	31	
Conflicting Peds, #/hr	1	0	1	1	0	1	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	100	-	100	-	-	-	-	-	-	
Veh in Median Storage	e,# -	0	-	-	0	-	-	1	-	-	1	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93	
Heavy Vehicles, %	7	3	0	0	2	10	33	0	0	10	0	0	
Mvmt Flow	31	501	14	65	773	11	3	0	2	20	0	33	
	Major1			Major2			Minor1			Minor2			
Conflicting Flow All	785	0	0	516	0	0	1088	1486	259	1217	1482	388	
Stage 1	-	-	-	-	-	-	571	571	-	904	904	-	
Stage 2	-	-	-	-	-	-	517	915	-	313	578	-	
Critical Hdwy	4.24	-	-	4.1	-	-	8.16	6.5	6.9	7.7	6.5	6.9	
Critical Hdwy Stg 1	-	-	-	-	-	-	7.16	5.5	-	6.7	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	7.16	5.5	-	6.7	5.5	-	
Follow-up Hdwy	2.27	-	-	2.2	-	-	3.83	4	3.3	3.6	4	3.3	
Pot Cap-1 Maneuver	*1159	-	-	1332	-	-	*533	333	*912	*568	337	*796	
Stage 1	-	-	-	-	-	-	*681	684	-	*609	577	-	
Stage 2	-	-	-	-	-	-	*687	569	-	*837	678	-	
Platoon blocked, %	1	-	-	1	-	-	1	1	1	1	1	1	
Mov Cap-1 Maneuver		-	-	1331	-	-	*482	308	*911	*534	311	*796	
Mov Cap-2 Maneuver	-	-	-	-	-	-	*503	399	-	*529	402	-	
Stage 1	-	-	-	-	-	-	*662	665	-	*592	548	-	
Stage 2	-	-	-	-	-	-	*626	541	-	*812	659	-	
Annroach	EB			WB			NB			SB			
Approach	0.5			0.6			10.9			9.7			
HCM Control Delay, s HCM LOS	0.5			0.0			10.9 B			9.7 A			
TIGWI LOS							ь			^			
Minor Lane/Major Mvr	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)			* 1158	-		1331	-	-	796				
HCM Lane V/C Ratio				-		0.048	-	_	0.042				
HCM Control Delay (s)	10.9	8.2	-	-	7.8	-	-	9.7				
HCM Lane LOS		В	Α	-	-	A	-	-	Α				
HCM 95th %tile Q(veh	1)	0	0.1	-	-	0.2	-	-	0.1				
Notes													
~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon										*: All	major v	olume ii	n platoon

Lanes, Volumes, Timings 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	۶	→	*	•	+	•	1	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	^	7		4		7	1	
Traffic Volume (vph)	46	407	45	20	710	34	70	7	82	21	5	32
Future Volume (vph)	46	407	45	20	710	34	70	7	82	21	5	32
Adj. Flow (vph)	49	438	48	22	763	37	75	8	88	23	5	34
Lane Group Flow (vph)	49	486	0	22	763	37	0	171	0	23	39	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	26.0	85.0		17.0	76.0	76.0	42.0	42.0		16.0	58.0	
Total Split (%)	16.3%	53.1%		10.6%	47.5%	47.5%	26.3%	26.3%		10.0%	36.3%	
Maximum Green (s)	19.8	78.9		11.7	69.9	69.9	35.5	35.5		9.9	51.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	115.1	110.6		112.6	106.7	106.7		20.7		30.1	29.7	
Actuated g/C Ratio	0.72	0.69		0.70	0.67	0.67		0.13		0.19	0.19	
v/c Ratio	0.10	0.21		0.03	0.33	0.03		0.78		0.12	0.12	
Control Delay	8.8	11.5		8.1	12.5	0.1		77.7		48.1	16.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	8.8	11.5		8.1	12.5	0.1		77.7		48.1	16.4	
LOS	Α	В		Α	В	Α		E		D	В	
Approach Delay		11.3			11.8			77.7			28.1	
Approach LOS		В			В			E			С	
Queue Length 50th (ft)	14	106		5	173	0		145		19	4	
Queue Length 95th (ft)	36	165		17	232	0		221		42	35	
Internal Link Dist (ft)		969			335			119			430	
Turn Bay Length (ft)	125			115								
Base Capacity (vph)	591	2330		723	2315	1100		353		195	519	
Starvation Cap Reductn	0	0		0	0	0		0		0	0	
Spillback Cap Reductn	0	0		0	0	0		0		0	0	
Storage Cap Reductn	0	0		0	0	0		0		0	0	
Reduced v/c Ratio	0.08	0.21		0.03	0.33	0.03		0.48		0.12	0.08	
Intersection Summary												

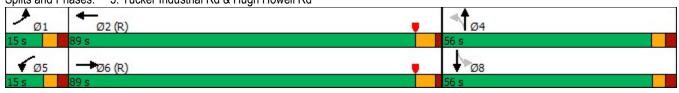

Synchro 10 Report Page 3 Baseline

03/09/2022

Analysis Period (min) 15

Baseline Synchro 10 Report

	٠	→	•	•	←	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		*	^	7		4		*	7	
Traffic Volume (veh/h)	46	407	45	20	710	34	70	7	82	21	5	32
Future Volume (veh/h)	46	407	45	20	710	34	70	7	82	21	5	32
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1900	1841	1900	1900	1900	1900	1752	1900	1900
Adj Flow Rate, veh/h	49	438	48	22	763	37	75	8	88	23	5	34
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	5	5	0	4	0	0	0	0	10	0	0
Cap, veh/h	570	2155	235	664	2302	1059	112	15	100	198	39	265
Arrive On Green	0.04	0.68	0.68	0.04	1.00	1.00	0.13	0.13	0.13	0.02	0.19	0.19
Sat Flow, veh/h	1810	3154	344	1810	3497	1609	624	119	787	1668	211	1432
Grp Volume(v), veh/h	49	240	246	22	763	37	171	0	0	23	0	39
Grp Sat Flow(s),veh/h/ln	1810	1735	1764	1810	1749	1609	1530	0	0	1668	0	1642
Q Serve(g_s), s	1.3	8.1	8.2	0.6	0.0	0.0	16.3	0.0	0.0	1.9	0.0	3.2
Cycle Q Clear(g_c), s	1.3	8.1	8.2	0.6	0.0	0.0	17.5	0.0	0.0	1.9	0.0	3.2
Prop In Lane	1.00		0.20	1.00		1.00	0.44		0.51	1.00		0.87
Lane Grp Cap(c), veh/h	570	1185	1205	664	2302	1059	227	0	0	198	0	304
V/C Ratio(X)	0.09	0.20	0.20	0.03	0.33	0.03	0.75	0.00	0.00	0.12	0.00	0.13
Avail Cap(c_a), veh/h	723	1185	1205	761	2302	1059	370	0	0	268	0	529
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.5	9.3	9.3	8.3	0.0	0.0	68.5	0.0	0.0	57.3	0.0	54.4
Incr Delay (d2), s/veh	0.1	0.4	0.4	0.0	0.4	0.1	5.0	0.0	0.0	0.3	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	3.0	3.1	0.2	0.1	0.0	7.2	0.0	0.0	0.8	0.0	1.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	7.6	9.7	9.7	8.3	0.4	0.1	73.5	0.0	0.0	57.5	0.0	54.6
LnGrp LOS	Α	Α	Α	Α	Α	Α	Е	Α	Α	Е	Α	D
Approach Vol, veh/h		535			822			171			62	
Approach Delay, s/veh		9.5			0.6			73.5			55.7	
Approach LOS		Α			Α			Е			Е	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.4	111.4		36.2	8.4	115.4	9.3	26.9				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 20	69.9		51.5	* 12	78.9	9.9	35.5				
Max Q Clear Time (g_c+l1), s	3.3	2.0		5.2	2.6	10.2	3.9	19.5				
Green Ext Time (p_c), s	0.1	12.8		0.2	0.0	6.2	0.0	0.8				
`` ,	J. 1	12.0		5.2	3.0	J.L	0.0	0.0				
Intersection Summary			40.0									
HCM 6th Ctrl Delay			13.6									
HCM 6th LOS			В									


* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Synchro 10 Report Baseline Page 5

	۶	-	*	•	•	•	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†		ň	†			4			4	
Traffic Volume (vph)	8	374	58	34	706	23	78	6	25	6	2	12
Future Volume (vph)	8	374	58	34	706	23	78	6	25	6	2	12
Adj. Flow (vph)	9	416	64	38	784	26	87	7	28	7	2	13
Lane Group Flow (vph)	9	480	0	38	810	0	0	122	0	0	22	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	89.0		15.0	89.0		56.0	56.0		56.0	56.0	
Total Split (%)	9.4%	55.6%		9.4%	55.6%		35.0%	35.0%		35.0%	35.0%	
Maximum Green (s)	8.9	82.6		9.1	82.6		49.9	49.9		50.1	50.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	15.0		0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		18.0			18.0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	6.4	116.2		9.1	126.2			18.5			18.7	
Actuated g/C Ratio	0.04	0.73		0.06	0.79			0.12			0.12	
v/c Ratio	0.13	0.20		0.42	0.30			0.73			0.10	
Control Delay	98.6	9.8		85.4	5.9			85.2			35.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	98.6	9.8		85.4	5.9			85.2			35.0	
LOS	F	Α		F	Α			F			D	
Approach Delay		11.5			9.5			85.2			35.0	
Approach LOS		В			Α			F			D	
Queue Length 50th (ft)	8	127		39	95			115			9	
Queue Length 95th (ft)	m28	199		79	216			181			36	
Internal Link Dist (ft)		1068			568			739			1148	
Turn Bay Length (ft)	150			100								
Base Capacity (vph)	100	2447		101	2743			437			543	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.09	0.20		0.38	0.30			0.28			0.04	
Intersection Summary												

Cycle Length: 160
Actuated Cycle Length: 160
Offset: 38.6 (24%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.73
Intersection Signal Delay: 16.8 Intersection LOS: B
Intersection Capacity Utilization 51.8% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

	۶	→	•	•	←	•	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	↑ ↑		7	↑ ↑			4			4	
Traffic Volume (veh/h)	8	374	58	34	706	23	78	6	25	6	2	12
Future Volume (veh/h)	8	374	58	34	706	23	78	6	25	6	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1826	1826	1722	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	9	416	64	38	784	26	87	7	28	7	2	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	0	5	5	12	3	3	0	0	0	0	0	0
Cap, veh/h	19	2290	350	48	2712	90	145	9	34	68	29	98
Arrive On Green	0.02	1.00	1.00	0.03	0.78	0.78	0.09	0.09	0.09	0.09	0.09	0.09
Sat Flow, veh/h	1810	3007	459	1640	3482	115	1126	93	363	406	311	1037
Grp Volume(v), veh/h	9	239	241	38	397	413	122	0	0	22	0	0
Grp Sat Flow(s), veh/h/ln	1810	1735	1732	1640	1763	1835	1581	0	0	1755	0	0
Q Serve(g_s), s	0.8	0.0	0.0	3.7	10.3	10.3	10.2	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.8	0.0	0.0	3.7	10.3	10.3	12.0	0.0	0.0	1.8	0.0	0.0
Prop In Lane	1.00	0.0	0.27	1.00	10.0	0.06	0.71	0.0	0.23	0.32	0.0	0.59
Lane Grp Cap(c), veh/h	19	1321	1318	48	1373	1429	188	0	0.20	196	0	0.00
V/C Ratio(X)	0.48	0.18	0.18	0.80	0.29	0.29	0.65	0.00	0.00	0.11	0.00	0.00
Avail Cap(c_a), veh/h	101	1321	1318	93	1373	1429	522	0.00	0.00	548	0.00	0.00
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	77.9	0.0	0.0	77.2	5.0	5.0	70.9	0.0	0.0	66.4	0.0	0.0
Incr Delay (d2), s/veh	18.1	0.3	0.3	25.3	0.5	0.5	3.7	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.1	0.1	1.9	3.4	3.5	5.1	0.0	0.0	0.8	0.0	0.0
Unsig. Movement Delay, s/veh		0.1	V. 1	1.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh	96.0	0.3	0.3	102.5	5.6	5.6	74.6	0.0	0.0	66.7	0.0	0.0
LnGrp LOS	50.0 F	Α	Α	F	Α	Α	F	Α	Α	E	Α	A
Approach Vol, veh/h	<u> </u>	489	, <u>, , </u>	<u> </u>	848			122			22	
Approach Vol, ven/ii Approach Delay, s/veh		2.1			9.9			74.6			66.7	
Approach LOS		A			9.9 A			74.0 E			60.7 E	
Timer - Assigned Phs	11	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.7	131.0		21.2	10.5	128.2		21.2				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 83		49.9	* 9.1	* 83		* 50				
Max Q Clear Time (g_c+I1), s	2.8	12.3		14.0	5.7	2.0		3.8				
Green Ext Time (p_c), s	0.0	12.3		0.7	0.0	6.2		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			13.5									
HCM 6th LOS			В									
Notos												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	-	*	1	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	13			ન	NA.	
Traffic Volume (vph)	50	29	40	48	30	117
Future Volume (vph)	50	29	40	48	30	117
Adj. Flow (vph)	68	39	54	65	41	158
Lane Group Flow (vph)	107	0	0	119	199	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 26.9%			IC	U Level c	f Service A
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	5.7					
		EDD	WDI	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽	00	40	4	Y	447
Traffic Vol, veh/h	50	29	40	48	30	117
Future Vol, veh/h	50	29	40	48	30	117
Conflicting Peds, #/hr	_ 0	0	0	_ 0	1	0
3	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	74	74	74	74	74	74
Heavy Vehicles, %	4	50	0	8	0	0
Mvmt Flow	68	39	54	65	41	158
Major/Minor M	ajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	107	0	262	88
Stage 1	-	-	-	-	88	-
Stage 2	_	_	_	_	174	_
Critical Hdwy	_	_	4.1	_	6.4	6.2
Critical Hdwy Stg 1	_	_	7.1	<u>-</u>	5.4	- 0.2
Critical Hdwy Stg 2	_		_		5.4	_
Follow-up Hdwy	_	_	2.2	<u> </u>	3.5	3.3
Pot Cap-1 Maneuver	_		1497		731	976
Stage 1	_		1431	_	940	-
Stage 2			_	-	861	_
Platoon blocked, %	-	-	-	-	001	-
		-	1497		702	976
Mov Cap-1 Maneuver	-	-	1497	-	703	
Mov Cap-2 Maneuver	-	-	-	-	703	-
Stage 1	-	-	-	-	940	-
Stage 2	-	-	-	-	828	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.4		10.1	
HCM LOS	-				В	
		,				
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		904	-		1497	-
HCM Lane V/C Ratio		0.22	-	-	0.036	-
HCM Control Delay (s)		10.1	-	-	7.5	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.8	-	-	0.1	-

Synchro 10 Report Page 10 Baseline

03/09/2022

1: Rosser Terrace/Fuller Way & Hugh Howell Rd

-												
	•	→	•	1	•	•	1	†	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		×	^	7		4			7	
Traffic Volume (vph)	30	1290	29	69	782	43	6	1	2	31	0	41
Future Volume (vph)	30	1290	29	69	782	43	6	1	2	31	0	41
Adj. Flow (vph)	31	1344	30	72	815	45	6	1	2	32	0	43
Lane Group Flow (vph)	31	1374	0	72	815	45	0	9	0	0	75	0
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 54.8%

Analysis Period (min) 15

ICU Level of Service A

Baseline Synchro 10 Report

Intersection													
Int Delay, s/veh	0.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	†		*	^	1		4			1		
Traffic Vol, veh/h	30	1290	29	69	782	43	6	1	2	31	0	41	
Future Vol, veh/h	30	1290	29	69	782	43	6	1	2	31	0	41	
Conflicting Peds, #/hr	0	0	2	2	0	0	0	0	0	0	0	0	
	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	_	-		-	_	None	_	_	None	_	_	None	
Storage Length	100	_	_	100	-	100	-	_	-	-	_	-	
Veh in Median Storage,		0	-	-	0	-	-	1	-	-	1	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	4	3	0	0	3	7	0	0	0	0	0	10	
Mvmt Flow	31	1344	30	72	815	45	6	1	2	32	0	43	
									_				
Major/Minor Major/Minor	ajor1		N	Major2		N	Minor1		N	/linor2			
Conflicting Flow All	860	0	0	1376	0	0	1975	2427	689	1694	2397	408	
Stage 1	-	-	-	13/0	-	-	1423	1423	-	959	959	400	
Stage 2	_		_	_	_	_	552	1004	-	735	1438	_	
	4.18	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	7.1	
Critical Hdwy Stg 1	4.10	_	<u> </u>	7.1	_	_	6.5	5.5	0.5	6.5	5.5	- 1.1	
Critical Hdwy Stg 2	_	_	_	_	_	_	6.5	5.5	_	6.5	5.5	_	
	2.24	_	<u> </u>	2.2	_	_	3.5	4	3.3	3.5	4	3.4	
. ,	1145	_	_	*849	_	_	*102	*37	*565	*252	*40	*754	
Stage 1	-	_	<u>-</u>	043	_	<u>-</u>	*533	*467	-	*609	*560	- 104	
Stage 2	_	_	_	_	_	_	*733	*526	_	*533	*467	_	
Platoon blocked, %	1	_	<u>-</u>	1	_	<u>-</u>	1	1	1	1	1	1	
	1145	_	_	*847	_	_	*88	*33	*564	*229	*36	*754	
Mov Cap-2 Maneuver	-	_	<u>-</u>	-	_	<u>-</u>	*294	*221	-	*332	*216	-	
Stage 1	_	_	_	_	_	_	*518	*453	_	*593	*513	_	
Stage 2	_	_	_	_	_	_	*633	*481	_	*516	*453	_	
g -													
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.2			0.7			16.7			10.1			
HCM LOS	0.2			0.7			C			В			
TIOM LOO													
Minor Lang/Major Muset		IDI 51	EBL	EDT	EDD	\\/DI	WPT	W/PD	CDI n1				
Minor Lane/Major Mvmt	ľ	NBLn1		EBT	EBR	WBL * 047	WBT	WBR					
Capacity (veh/h)		316	1145	-		* 847	-	-	754				
HCM Control Polov (a)			0.027	-	-	0.085	-		0.057				
HCM Control Delay (s)		16.7	8.2	-	-	9.6	-	-	10.1				
HCM Lane LOS		C	A	-	-	A	-	-	В				
HCM 95th %tile Q(veh)		0.1	0.1	-	-	0.3	-	-	0.2				
Notes													
~: Volume exceeds capacity \$: Delay exceeds 300s			00s	+: Comp	outation	Not De	efined	*: All	major v	olume i	n platoon		

Lanes, Volumes, Timings 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	۶	→	*	•	+	•	1	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		7	^	7		4		*	1	
Traffic Volume (vph)	138	1136	76	53	681	76	103	29	109	86	35	98
Future Volume (vph)	138	1136	76	53	681	76	103	29	109	86	35	98
Adj. Flow (vph)	148	1222	82	57	732	82	111	31	117	92	38	105
Lane Group Flow (vph)	148	1304	0	57	732	82	0	259	0	92	143	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	16.0	94.0		15.0	93.0	93.0	36.0	36.0		15.0	51.0	
Total Split (%)	10.0%	58.8%		9.4%	58.1%	58.1%	22.5%	22.5%		9.4%	31.9%	
Maximum Green (s)	9.8	87.9		9.7	86.9	86.9	29.5	29.5		8.9	44.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	100.8	93.1		96.1	87.9	87.9		29.0		44.3	43.9	
Actuated g/C Ratio	0.63	0.58		0.60	0.55	0.55		0.18		0.28	0.27	
v/c Ratio	0.34	0.64		0.25	0.38	0.09		0.96		0.33	0.29	
Control Delay	13.4	24.9		11.5	17.5	0.6		103.8		47.8	20.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	13.4	24.9		11.5	17.5	0.6		103.8		47.8	20.2	
LOS	В	С		В	В	Α		F		D	С	
Approach Delay		23.7			15.5			103.8			31.0	
Approach LOS		С			В			F			С	
Queue Length 50th (ft)	57	482		16	162	0		250		74	45	
Queue Length 95th (ft)	89	574		m28	190	m3		#436		125	107	
Internal Link Dist (ft)		969			335			94			430	
Turn Bay Length (ft)	125			115								
Base Capacity (vph)	437	2027		251	1926	916		274		277	500	
Starvation Cap Reductn	0	0		0	0	0		0		0	0	
Spillback Cap Reductn	0	0		0	0	0		0		0	0	
Storage Cap Reductn	0	0		0	0	0		0		0	0	
Reduced v/c Ratio	0.34	0.64		0.23	0.38	0.09		0.95		0.33	0.29	
Intersection Summary												

Synchro 10 Report Page 3 Baseline

2: Cowan Rd/The Centre Driveway & Hugh Howell Rd

Cycle Length: 160
Actuated Cycle Length: 160

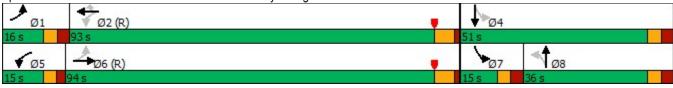
Offset: 102.9 (64%), Referenced to phase 2:WBTL and 6:EBTL, Start of Yellow

Natural Cycle: 95

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.96

Intersection Signal Delay: 29.1 Intersection LOS: C
Intersection Capacity Utilization 80.5% ICU Level of Service D

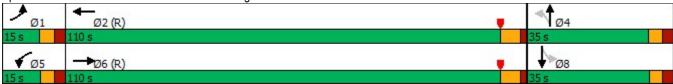

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd


	٠	→	•	•	←	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† ‡		*	*	7		4		*	1€	
Traffic Volume (veh/h)	138	1136	76	53	681	76	103	29	109	86	35	98
Future Volume (veh/h)	138	1136	76	53	681	76	103	29	109	86	35	98
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	10-0	1000	No	40-0	1000	No	1000	100-	No	1000
Adj Sat Flow, veh/h/ln	1900	1856	1856	1900	1856	1870	1900	1900	1900	1885	1900	1900
Adj Flow Rate, veh/h	148	1222	82	57	732	82	111	31	117	92	38	105
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	3	3	0	3	2	0	0	0	1	0	0
Cap, veh/h	513	1960	131	245	1974	888	145	36	123	304	122	338
Arrive On Green	0.05	0.58	0.58	0.06	1.00	1.00	0.18	0.18	0.18	0.05	0.27	0.27
Sat Flow, veh/h	1810	3353	225	1810	3526	1585	610	197	665	1795	446	1231
Grp Volume(v), veh/h	148	642	662	57	732	82	259	0	0	92	0	143
Grp Sat Flow(s),veh/h/ln	1810	1763	1815	1810	1763	1585	1472	0	0	1795	0	1677
Q Serve(g_s), s	5.6	38.0	38.2	2.1	0.0	0.0	27.0	0.0	0.0	6.5	0.0	10.8
Cycle Q Clear(g_c), s	5.6	38.0	38.2	2.1	0.0	0.0	27.9	0.0	0.0	6.5	0.0	10.8
Prop In Lane	1.00		0.12	1.00		1.00	0.43		0.45	1.00	_	0.73
Lane Grp Cap(c), veh/h	513	1031	1061	245	1974	888	304	0	0	304	0	461
V/C Ratio(X)	0.29	0.62	0.62	0.23	0.37	0.09	0.85	0.00	0.00	0.30	0.00	0.31
Avail Cap(c_a), veh/h	537	1031	1061	303	1974	888	304	0	0	310	0	466
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.4	21.7	21.7	17.6	0.0	0.0	64.5	0.0	0.0	47.5	0.0	46.0
Incr Delay (d2), s/veh	0.3	2.8	2.8	0.5	0.5	0.2	20.3	0.0	0.0	0.6	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.3	15.9	16.3	0.9	0.1	0.1	12.2	0.0	0.0	3.0	0.0	4.6
Unsig. Movement Delay, s/veh		04.5	04.5	40.4	0.5	0.0	040	0.0	0.0	10.1	0.0	10.1
LnGrp Delay(d),s/veh	13.7	24.5	24.5	18.1	0.5	0.2	84.8	0.0	0.0	48.1	0.0	46.4
LnGrp LOS	В	С	С	В	A	Α	F	A	Α	D	A	<u>D</u>
Approach Vol, veh/h		1452			871			259			235	
Approach Delay, s/veh		23.4			1.7			84.8			47.1	
Approach LOS		С			Α			F			D	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.9	95.7		50.5	9.9	99.6	14.5	36.0				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 9.8	86.9		44.5	* 9.7	87.9	8.9	29.5				
Max Q Clear Time (g_c+l1), s	7.6	2.0		12.8	4.1	40.2	8.5	29.9				
Green Ext Time (p_c), s	0.1	12.8		0.9	0.0	23.8	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			24.3									
HCM 6th LOS			С									

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		7	↑ ↑			4			4	
Traffic Volume (vph)	8	1049	211	54	701	6	138	1	75	28	10	8
Future Volume (vph)	8	1049	211	54	701	6	138	1	75	28	10	8
Adj. Flow (vph)	8	1104	222	57	738	6	145	1	79	29	11	8
Lane Group Flow (vph)	8	1326	0	57	744	0	0	225	0	0	48	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	11.1	31.4		10.9	31.4		31.1	31.1		33.9	33.9	
Total Split (s)	15.0	110.0		15.0	110.0		35.0	35.0		35.0	35.0	
Total Split (%)	9.4%	68.8%		9.4%	68.8%		21.9%	21.9%		21.9%	21.9%	
Maximum Green (s)	8.9	103.6		9.1	103.6		28.9	28.9		29.1	29.1	
Yellow Time (s)	3.5	4.7		3.3	4.7		3.3	3.3		3.0	3.0	
All-Red Time (s)	2.6	1.7		2.6	1.7		2.8	2.8		2.9	2.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.1	6.4		5.9	6.4			6.1			5.9	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	5.0		3.0	5.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0		0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	15.0		0.0	15.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		18.0			18.0		18.0	18.0		21.0	21.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	6.5	109.0		8.7	118.2			26.5			26.7	
Actuated g/C Ratio	0.04	0.68		0.05	0.74			0.17			0.17	
v/c Ratio	0.13	0.57		0.65	0.29			0.90			0.19	
Control Delay	89.2	6.5		104.9	8.0			95.4			51.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	89.2	6.5		104.9	8.0			95.4			51.0	
LOS	F	Α		F	Α			F			D	
Approach Delay		7.0			14.9			95.4			51.0	
Approach LOS		Α			В			F			D	
Queue Length 50th (ft)	9	142		59	122			215			38	
Queue Length 95th (ft)	m15	m155		#124	206			#359			79	
Internal Link Dist (ft)		1068			568			739			1148	
Turn Bay Length (ft)	150			100								
Base Capacity (vph)	83	2334		93	2587			273			269	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.10	0.57		0.61	0.29			0.82			0.18	
Intersection Summary												

Cycle Length: 160
Actuated Cycle Length: 160
Offset: 118.6 (74%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.90
Intersection Signal Delay: 18.8 Intersection LOS: B
Intersection Capacity Utilization 70.3% ICU Level of Service C
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile gueue is metered by upstream signal.

Splits and Phases: 3: Tucker Industrial Rd & Hugh Howell Rd

	۶	→	*	•	•	•	1	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		7	↑ ↑			4			4	
Traffic Volume (veh/h)	8	1049	211	54	701	6	138	1	75	28	10	8
Future Volume (veh/h)	8	1049	211	54	701	6	138	1	75	28	10	8
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1604	1856	1856	1752	1856	1856	1900	1976	1900	1900	1976	1900
Adj Flow Rate, veh/h	8	1104	222	57	738	6	145	1	79	29	11	8
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	20	3	3	10	3	3	0	0	0	0	0	0
Cap, veh/h	14	2015	403	71	2583	21	195	1	86	167	63	39
Arrive On Green	0.02	1.00	1.00	0.04	0.72	0.72	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1527	2926	586	1668	3584	29	1028	7	560	853	409	252
Grp Volume(v), veh/h	8	663	663	57	363	381	225	0	0	48	0	0
Grp Sat Flow(s),veh/h/ln	1527	1763	1749	1668	1763	1850	1596	0	0	1513	0	0
Q Serve(g_s), s	0.8	0.0	0.0	5.4	11.6	11.6	18.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.8	0.0	0.0	5.4	11.6	11.6	22.1	0.0	0.0	4.1	0.0	0.0
Prop In Lane	1.00		0.33	1.00		0.02	0.64		0.35	0.60		0.17
Lane Grp Cap(c), veh/h	14	1214	1204	71	1270	1333	282	0	0	269	0	0
V/C Ratio(X)	0.56	0.55	0.55	0.80	0.29	0.29	0.80	0.00	0.00	0.18	0.00	0.00
Avail Cap(c_a), veh/h	85	1214	1204	95	1270	1333	324	0	0	312	0	0
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	78.2	0.0	0.0	75.9	7.9	7.9	66.3	0.0	0.0	58.9	0.0	0.0
Incr Delay (d2), s/veh	30.1	1.8	1.8	28.5	0.6	0.5	11.6	0.0	0.0	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.6	0.6	2.9	4.2	4.4	9.9	0.0	0.0	1.7	0.0	0.0
Unsig. Movement Delay, s/veh		4.0	4.0	1011	0.4	0.4	0	0.0	0.0	50.0	0.0	0.0
LnGrp Delay(d),s/veh	108.3	1.8	1.8	104.4	8.4	8.4	77.9	0.0	0.0	59.2	0.0	0.0
LnGrp LOS	F	A	A	F	A	A	E	A	A	E	A	A
Approach Vol, veh/h		1334			801			225			48	
Approach Delay, s/veh		2.4			15.3			77.9			59.2	
Approach LOS		Α			В			Е			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.6	121.7		30.7	12.7	116.6		30.7				
Change Period (Y+Rc), s	6.1	* 6.4		6.1	* 5.9	* 6.4		* 6.1				
Max Green Setting (Gmax), s	8.9	* 1E2		28.9	* 9.1	* 1E2		* 29				
Max Q Clear Time (g_c+l1), s	2.8	13.6		24.1	7.4	2.0		6.1				
Green Ext Time (p_c), s	0.0	10.9		0.5	0.0	32.2		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			14.9									
HCM 6th LOS			В									

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	-	*	1	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^	NA.	
Traffic Volume (vph)	145	35	65	93	30	141
Future Volume (vph)	145	35	65	93	30	141
Adj. Flow (vph)	158	38	71	101	33	153
Lane Group Flow (vph)	196	0	0	172	186	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 39.1%			IC	U Level c	of Service A
Analysis Period (min) 15						

Synchro 10 Report Page 9 Baseline

Intersection						
Int Delay, s/veh	4.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†			†	¥	
Traffic Vol, veh/h	145	35	65	93	30	141
Future Vol, veh/h	145	35	65	93	30	141
Conflicting Peds, #/hr		1	1	0	1	2
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		_	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag	e,# 0	-	_	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	25	0	0	0	0
Mvmt Flow	158	38	71	101	33	153
N.A ' /N.A.'	Maria d		4 . 0		M'	
Major/Minor	Major1		Major2		Minor1	400
Conflicting Flow All	0	0	197	0	422	180
Stage 1	-	-	-	-	178	-
Stage 2	-	-	-	-	244	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1388	-	592	868
Stage 1	-	-	-	-	858	-
Stage 2	-	-	-	-	801	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	· -	-	1387	-	559	866
Mov Cap-2 Maneuver	· -	-	-	-	559	-
Stage 1	-	-	-	-	857	-
Stage 2	-	-	-	-	757	-
A mare a ala	EB		WD		ND	
Approach			WB		NB	
HCM Control Delay, s	0		3.2		11	
HCM LOS					В	
Minor Lane/Major Mvi	mt l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		790	-	-	1387	-
HCM Lane V/C Ratio		0.235	-	-	0.051	-
HCM Control Delay (s	s)	11	-	-	7.7	-
HCM Lane LOS		В	-	-	Α	-
HCM 95th %tile Q(vel	n)	0.9	-	-	0.2	-

Synchro 10 Report Page 10 Baseline

2023 BUILD IMPROVED CONDITIONS Capacity Analysis

1: Rosser Terrace/Fuller Way & Hugh Howell Rd

03/09/2022

	۶	→	•	1	•	•	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	^	7		4			1	
Traffic Volume (vph)	29	466	13	60	719	10	3	0	2	19	0	31
Future Volume (vph)	29	466	13	60	719	10	3	0	2	19	0	31
Adj. Flow (vph)	31	501	14	65	773	11	3	0	2	20	0	33
Lane Group Flow (vph)	31	501	14	65	773	11	0	5	0	0	53	0
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 36.5% Analysis Period (min) 15

ICU Level of Service A

Synchro 10 Report Baseline Page 1

ntersection													
nt Delay, s/veh	0.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
_ane Configurations	ሻ	^	7	ኘ	^	7	IIDL	4	HOIL	ODL	1	OBIT	
Fraffic Vol, veh/h	29	466	13	60	719	10	3	0	2	19	0	31	
uture Vol, veh/h	29	466	13	60	719	10	3	0	2	19	0	31	
Conflicting Peds, #/hr	1	0	1	1	0	10	0	0	0	0	0	0	
ign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	Stop -	Stop -	None	Stop -	Stop -	None	
torage Length	100	_	100	100	_	100	_	_	-		_	NOHE	
eh in Median Storage,		0	-	100	0	100	_	1	_	-	1	_	
Grade, %	# -	0			0		_	0	_	_	0	_	
eak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93	
						10	33	93	93	10			
leavy Vehicles, %	7	3	0	0	2						0	0	
1vmt Flow	31	501	14	65	773	11	3	0	2	20	0	33	
lajor/Minor M	1ajor1		N	Major2		N	Minor1		N	/linor2			
onflicting Flow All	785	0	0	516	0	0	1081	1479	252	1217	1482	388	
Stage 1	_	-	-	-	-	-	564	564	-	904	904	-	
Stage 2	_	-	-	-	-	-	517	915	-	313	578	-	
ritical Hdwy	4.24	-	-	4.1	_	-	8.16	6.5	6.9	7.7	6.5	6.9	
ritical Hdwy Stg 1	-	_	_	-	-	_	7.16	5.5	-	6.7	5.5	-	
ritical Hdwy Stg 2	_	_	-	_	_	_	7.16	5.5	_	6.7	5.5	_	
ollow-up Hdwy	2.27	_	_	2.2	_	_	3.83	4	3.3	3.6	4	3.3	
	*1159	_	-	1332	_	_	*533	339	*912	*568	337	*796	
Stage 1	-	_	_	-	_	_	*689	689	-	*609	577	-	
Stage 2	_	_	_	_	_	_	*687	569	_	*837	678	_	
Platoon blocked, %	1	_	_	1	_	_	1	1	1	1	1	1	
Nov Cap-1 Maneuver *		_	_	1331	_	_	*482	313	*911	*534	311	*796	
Nov Cap-2 Maneuver	-	_	_	-	_	_	*504	402	-	*529	402	-	
Stage 1	_	_	_	_	_	_	*670	670	_	*592	548	_	
Stage 2	_	_	_	_	_	_	*626	541	_	*812	659	_	
Olago Z							020	J+1		012	000		
pproach	EB			WB			NB			SB			
ICM Control Delay, s	0.5			0.6			10.9			9.7			
ICM LOS							В			Α			
linor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1				
capacity (veh/h)			* 1158	-	-	1331	-	-	796				
CM Lane V/C Ratio		0.009	0.027	-		0.048	-		0.042				
CM Control Delay (s)		10.9	8.2	-	_	7.8	_	-	9.7				
CM Lane LOS		10.9 B	0.2 A		_	7.6 A		-	9.7 A				
CM 95th %tile Q(veh)		0	0.1	-	-	0.2	-	-	0.1				
IOW SOUL WILL W(VEN)		U	U. I		-	U.Z	-	-	0.1				
otes													
Volume exceeds capa	acity	\$: De	lay exc	eeds 30	00s -	+: Comp	outation	Not De	efined	*: All	major v	olume ii	n platoon

Synchro 10 Report Page 2 Baseline

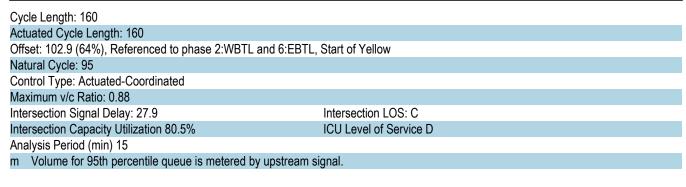
Lanes, Volumes, Timings 1: Rosser Terrace/Fuller Way & Hugh Howell Rd

03/09/2022

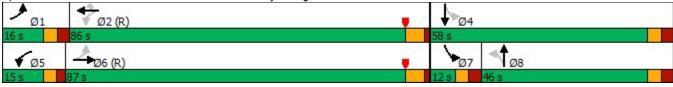
	۶	→	•	•	•	•	4	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	*	^	7		4			f)	
Traffic Volume (vph)	30	1290	29	69	782	43	6	1	2	31	0	41
Future Volume (vph)	30	1290	29	69	782	43	6	1	2	31	0	41
Adj. Flow (vph)	31	1344	30	72	815	45	6	1	2	32	0	43
Lane Group Flow (vph)	31	1344	30	72	815	45	0	9	0	0	75	0
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilization Analysis Period (min) 15	on 53.9%			IC	U Level o	of Service	A					

Synchro 10 Report Baseline Page 1

Intersection													
Int Delay, s/veh	0.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	† †	7	ሻ	^	7	INDL	4	NDIX	ODL	13	ODIN	
Traffic Vol, veh/h	30	1290	29	69	782	43	6	1	2	31	0	41	
future Vol, veh/h	30	1290	29	69	782	43	6	1	2	31	0	41	
Conflicting Peds, #/hr	0	0	2	2	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	Slop -	Stop -	None	Stop -	Stop -	None	
Storage Length	100	_	100	100	_	100	_		-		_	NONE	
/eh in Median Storage		0	-	-	0	100	_	1	_	_	1	_	
Grade, %		0	_	_	0	_	_	0	_	_	0	_	
eak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
eavy Vehicles, %	4	3	0	0	3	7	0	0	0	0	0	10	
Ivmt Flow	31	1344	30	72	815	45	6	1	2	32	0	43	
IVIIIL FIOW	٦١	1344	30	12	010	40	U	- 1	2	32	U	43	
/lajor/Minor	Major1		N	Major2		ı	Minor1		N	Minor2			
Conflicting Flow All	860	0	0	1376	0	0	1960	2412	674	1694	2397	408	
Stage 1	-	-	-	-	-	-	1408	1408	-	959	959	-	
Stage 2	-	-	-	-	-	-	552	1004	-	735	1438	-	
ritical Hdwy	4.18	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	7.1	
ritical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
ritical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
ollow-up Hdwy	2.24	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.4	
ot Cap-1 Maneuver	1145	-	-	*849	-	-	*107	*39	*565	*252	*40	*754	
Stage 1	-	-	-	-	-	-	*533	*467	-	*609	*560	-	
Stage 2	-	_	-	-	-	-	*733	*526	_	*533	*467	-	
latoon blocked, %	1	-	-	1	-	-	1	1	1	1	1	1	
Nov Cap-1 Maneuver	1145	-	-	*847	-	-	*93	*34	*564	*229	*36	*754	
Nov Cap-2 Maneuver	-	-	-	-	-	-	*296	*222	-	*332	*216	-	
Stage 1	-	_	-	-	-	-	*518	*453	_	*593	*513	-	
Stage 2	-	-	-	-	-	-	*633	*481	-	*516	*453	-	
, and the second													
Approach	EB			WB			NB			SB			
	0.2			0.7			16.7			10.1			
HCM Control Delay, s	0.2			0.7						-			
ICM LOS							С			В			
linor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1				
Capacity (veh/h)		318	1145	-	-	* 847	-	-	754				
CM Lane V/C Ratio		0.029	0.027	-	-	0.085	-	-	0.057				
ICM Control Delay (s)		16.7	8.2	-	-	9.6	-	-	10.1				
CM Lane LOS		С	Α	-	-	Α	-	-	В				
ICM 95th %tile Q(veh)	0.1	0.1	-	-	0.3	-	-	0.2				
lotes													
	nacity	¢. D.	Nov ovo	oodo 20)Oc	L. Com	outotion	Not D	ofined	*. AII	major	olumo i	n platoon
Volume exceeds ca	pacity	φ. D€	elay exc	eeus 30	105	+: Com _l	Julalion	ו ווטנ שנ	Sillieu	. All	major V	olullie II	ii piat00ii


Synchro 10 Report Page 2 Baseline

Lanes, Volumes, Timings 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd


	٠	→	•	•	•	•	1	†	/	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		*	^	7		4		*	7>	
Traffic Volume (vph)	138	1136	76	53	681	76	103	29	109	86	35	98
Future Volume (vph)	138	1136	76	53	681	76	103	29	109	86	35	98
Adj. Flow (vph)	148	1222	82	57	732	82	111	31	117	92	38	105
Lane Group Flow (vph)	148	1304	0	57	732	82	0	259	0	92	143	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	1	6		5	2			8		7	4	
Permitted Phases	6			2		2	8			4		
Detector Phase	1	6		5	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0		5.0	10.0	10.0	7.0	7.0		5.0	7.0	
Minimum Split (s)	13.2	27.4		10.3	32.1	32.1	35.5	35.5		11.1	35.5	
Total Split (s)	16.0	87.0		15.0	86.0	86.0	46.0	46.0		12.0	58.0	
Total Split (%)	10.0%	54.4%		9.4%	53.8%	53.8%	28.8%	28.8%		7.5%	36.3%	
Maximum Green (s)	9.8	80.9		9.7	79.9	79.9	39.5	39.5		5.9	51.5	
Yellow Time (s)	3.4	4.6		3.1	4.6	4.6	3.5	3.5		3.1	3.5	
All-Red Time (s)	2.8	1.5		2.2	1.5	1.5	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	6.2	6.1		5.3	6.1	6.1		6.5		6.1	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	3.0		0.2	3.0	3.0	0.2	0.2		0.2	0.2	
Time Before Reduce (s)	0.0	20.0		0.0	20.0	20.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	10.0		0.0	10.0	10.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0			7.0	
Flash Dont Walk (s)		10.0			19.0	19.0	22.0	22.0			22.0	
Pedestrian Calls (#/hr)		0			0	0	0	0			0	
Act Effct Green (s)	101.3	93.1		95.8	87.6	87.6		31.8		44.2	43.8	
Actuated g/C Ratio	0.63	0.58		0.60	0.55	0.55		0.20		0.28	0.27	
v/c Ratio	0.34	0.64		0.25	0.38	0.09		0.88		0.35	0.29	
Control Delay	14.2	26.0		12.5	18.2	0.6		84.3		46.6	17.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	14.2	26.0		12.5	18.2	0.6		84.3		46.6	17.4	
LOS	В	С		В	В	Α		F		D	В	
Approach Delay		24.8			16.2			84.3			28.8	
Approach LOS		С			В			F			С	
Queue Length 50th (ft)	58	485		16	170	0		241		74	40	
Queue Length 95th (ft)	101	640		m33	192	m3		340		117	94	
Internal Link Dist (ft)		969			335			94			430	
Turn Bay Length (ft)	125			115								
Base Capacity (vph)	441	2027		251	1918	912		360		266	570	
Starvation Cap Reductn	0	0		0	0	0		0		0	0	
Spillback Cap Reductn	0	0		0	0	0		0		0	0	
Storage Cap Reductn	0	0		0	0	0		0		0	0	
Reduced v/c Ratio	0.34	0.64		0.23	0.38	0.09		0.72		0.35	0.25	
Intersection Summary												

Synchro 10 Report Page 3 Baseline

03/09/2022

Splits and Phases: 2: Cowan Rd/The Centre Driveway & Hugh Howell Rd

	٠	→	*	•	•	4	4	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	^	7		4		*	₽	
Traffic Volume (veh/h)	138	1136	76	53	681	76	103	29	109	86	35	98
Future Volume (veh/h)	138	1136	76	53	681	76	103	29	109	86	35	98
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1856	1856	1900	1856	1870	1900	1900	1900	1885	1900	1900
Adj Flow Rate, veh/h	148	1222	82	57	732	82	111	31	117	92	38	105
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	3	3	0	3	2	0	0	0	1	0	0
Cap, veh/h	518	1987	133	251	2005	901	149	38	128	286	119	328
Arrive On Green	0.05	0.59	0.59	0.06	1.00	1.00	0.19	0.19	0.19	0.04	0.27	0.27
Sat Flow, veh/h	1810	3353	225	1810	3526	1585	608	199	665	1795	446	1231
Grp Volume(v), veh/h	148	642	662	57	732	82	259	0	0	92	0	143
Grp Sat Flow(s),veh/h/ln	1810	1763	1815	1810	1763	1585	1473	0	0	1795	0	1677
Q Serve(g_s), s	5.5	37.3	37.4	2.1	0.0	0.0	26.6	0.0	0.0	5.9	0.0	10.9
Cycle Q Clear(g_c), s	5.5	37.3	37.4	2.1	0.0	0.0	27.6	0.0	0.0	5.9	0.0	10.9
Prop In Lane	1.00		0.12	1.00		1.00	0.43		0.45	1.00		0.73
Lane Grp Cap(c), veh/h	518	1045	1076	251	2005	901	314	0	0	286	0	447
V/C Ratio(X)	0.29	0.61	0.62	0.23	0.37	0.09	0.82	0.00	0.00	0.32	0.00	0.32
Avail Cap(c_a), veh/h	543	1045	1076	309	2005	901	395	0	0	286	0	540
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	12.9	20.9	20.9	16.9	0.0	0.0	63.3	0.0	0.0	48.6	0.0	47.0
Incr Delay (d2), s/veh	0.3	2.7	2.6	0.5	0.5	0.2	10.8	0.0	0.0	0.6	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.2	15.5	15.9	0.8	0.1	0.1	11.3	0.0	0.0	3.0	0.0	4.7
Unsig. Movement Delay, s/veh		00.0	00.5	47.4	0.5	0.0	-44	0.0	0.0	40.0	0.0	4= 4
LnGrp Delay(d),s/veh	13.2	23.6	23.5	17.4	0.5	0.2	74.1	0.0	0.0	49.2	0.0	47.4
LnGrp LOS	В	С	С	В	A	A	E	A	A	D	A	<u>D</u>
Approach Vol, veh/h		1452			871			259			235	
Approach Delay, s/veh		22.5			1.6			74.1			48.1	
Approach LOS		С			Α			Е			D	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.7	97.1		49.2	9.9	100.9	12.0	37.2				
Change Period (Y+Rc), s	* 6.2	6.1		6.5	* 5.3	6.1	6.1	6.5				
Max Green Setting (Gmax), s	* 9.8	79.9		51.5	* 9.7	80.9	5.9	39.5				
Max Q Clear Time (g_c+l1), s	7.5	2.0		12.9	4.1	39.4	7.9	29.6				
Green Ext Time (p_c), s	0.1	12.8		0.9	0.0	22.1	0.0	1.1				
Intersection Summary												
HCM 6th Ctrl Delay			22.9									
HCM 6th LOS			С									
N												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.